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Preface

Hidden Markov Models (HMMs), although known for decades, have made a big ca-
reer nowadays and are still in state of development. This book presents theoretical is-
sues and a variety of HMMs applications. Each of the 14 chapters addresses theoretical 
problems and refers to some applications, but the more theoretical parts are presented 
in Part 1 and the application oriented chapters are grouped in Part 2 and 3. 

Chapter 1 has an introductory character: the basic concepts (e.g. Maximum Likeli-
hood, Maximum a Posteriori and Maximum Mutual Information approaches to the 
HMM training) are explained. Problems of discriminative training are also discussed 
in1 (2) and (5) – in particular the Large Margin approach. Chapter (3) discusses the 
united approach to the HMM segmentation (decoding) problem based on statistical 
learning. The Viterbi training is compared with the Baum-Welch training in (2). The 
HMM evaluation problem is analyzed in (4), where the probability of classifi cation er-
ror in presence of corrupted observations (e.g. caused by sensor failures) is estimated. 
Chapter (6) presents the Global Variance constrained trajectory training algorithm for 
the HMMs used for speech signal generation. The Hidden Semi-Markov Models and 
Hidden Markov Trees are described in (7), the Pair HMMs in (8) and the Non-homo-
geneous HMMs in (10). The association of HMMs with other techniques, e.g. wavelet 
transforms (7) has proved useful for some applications.

The HMMs applications concerning recognition, classifi cation and alignment of sig-
nals described in time domain are presented in Part 2.  In (5) the hierarchical recog-
nition of spoken commands and in (6) the HMMs application in the Text-To-Speech 
synthesis is described. Chapter (7) presents the algorithms of the ECG signal analysis 
and segmentation. In (8) HMM applications in neurosciences are discussed, i.e. the 
brain activity modeling, the separation of signals generated by single neurons given 
a muti-neuron recording and the identifi cation and alignment of birdsong. In (9) the 
classifi cation of seismic signals is described and in (10) multi-pollutant exceedances 
data are analyzed. 

The applications referring to images, spatial structures and other data are presented in 
Part 3. Moving pictures (in forms of depth silhouett es) are recognized in the Human Ac-
tivity Recognition System described in (11). Some applications concern computational 

1 Numbers of chapters are referred in parentheses



X Preface

biology, bioinformatics and medicine. Predictions of gene functions and genetic abnor-
malities are discussed in (12), a 3-dimensional protein structure analyzer is described 
in (13) and a diagnosis of the sleep apnea syndrome is presented in (2). There are also 
applications in engineering: design of the energy effi  cient systems (e.g. server plat-
forms) is described in (14) and condition-based maintenance of machines – in (2).

I hope that the reader will fi nd this book useful and helpful for their own research.

Przemyslaw Dymarski
Warsaw University of Technology,Department of 

Electronics and Information Technology,
Institute of Telecommunications

Poland
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History and Theoretical Basics 
of Hidden Markov Models 

Guy Leonard Kouemou 
EADS Deutschland GmbH,  

Germany 

1. Introduction 
The following chapter can be understood as one sort of brief introduction to the history and 
basics of the Hidden Markov Models.  
Hidden Markov Models (HMMs) are learnable finite stochastic automates. Nowadays, they 
are considered as a specific form of dynamic Bayesian networks. Dynamic Bayesian 
networks are based on the theory of Bayes (Bayes & Price, 1763). 
A Hidden Markov Model consists of two stochastic processes. The first stochastic process is 
a Markov chain that is characterized by states and transition probabilities. The states of the 
chain are externally not visible, therefore “hidden”. The second stochastic process produces 
emissions observable at each moment, depending on a state-dependent probability 
distribution. It is important to notice that the denomination “hidden” while defining a 
Hidden Markov Model is referred to the states of the Markov chain, not to the parameters of 
the model. 
The history of the HMMs consists of two parts. On the one hand there is the history of 
Markov process and Markov chains, and on the other hand there is the history of algorithms 
needed to develop Hidden Markov Models in order to solve problems in the modern 
applied sciences by using for example a computer or similar electronic devices. 

1.1. Brief history of Markov process and Markov chains 
Andrey Andreyevich Markov (June 14, 1856 – July 20, 1922) was a Russian mathematician. 
He is best known for his work on the theory of stochastic Markov processes. His research 
area later became known as Markov process and Markov chains. 
Andrey Andreyevich Markov introduced the Markov chains in 1906 when he produced the 
first theoretical results for stochastic processes by using the term “chain” for the first time. In 
1913 he calculated letter sequences of the Russian language.  
A generalization to countable infinite state spaces was given by Kolmogorov (1931). Markov 
chains are related to Brownian motion and the ergodic hypothesis, two topics in physics 
which were important in the early years of the twentieth century. But Markov appears to 
have pursued this out of a mathematical motivation, namely the extension of the law of 
large numbers to dependent events. 
Out of this approach grew a general statistical instrument, the so-called stochastic Markov 
process. 
In mathematics generally, probability theory and statistics particularly, a Markov process 
can be considered as a time-varying random phenomenon for which Markov properties are 
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achieved. In a common description, a stochastic process with the Markov property, or 
memorylessness, is one for which conditions on the present state of the system, its future 
and past are independent (Markov1908),(Wikipedia1,2,3). 
Markov processes arise in probability and statistics in one of two ways. A stochastic process, 
defined via a separate argument, may be shown (mathematically) to have the Markov 
property and as a consequence to have the properties that can be deduced from this for all 
Markov processes. Of more practical importance is the use of the assumption that the 
Markov property holds for a certain random process in order to construct a stochastic model 
for that process. In modelling terms, assuming that the Markov property holds is one of a 
limited number of simple ways of introducing statistical dependence into a model for a 
stochastic process in such a way that allows the strength of dependence at different lags to 
decline as the lag increases. 
Often, the term Markov chain is used to mean a Markov process which has a discrete (finite 
or countable) state-space. Usually a Markov chain would be defined for a discrete set of 
times (i.e. a discrete-time Markov Chain) although some authors use the same terminology 
where "time" can take continuous values.  

1.2 Brief history of algorithms need to develop Hidden Markov Models 
With the strong development of computer sciences in the 1940's, after research results of 
scientist like John von Neuman, Turing, Conrad Zuse, the scientists all over the world tried to 
find algorithms solutions in order to solve many problems in real live by using deterministic 
automate as well as stochastic automate. Near the classical filter theory dominated by the 
linear filter theory, the non-linear and stochastic filter theory became more and more 
important. At the end of the 1950's and the 1960's we can notice in this category the 
domination of the "Luenberger-Observer", the "Wiener-Filter", the „Kalman-Filter" or the 
"Extended Kalman-Filter" as well as its derivatives (Foellinger1992), (Kalman1960).   
At the same period in the middle of the 20th century, Claude Shannon (1916 – 2001), an 
American mathematician and electronic engineer, introduced in his paper "A mathematical 
theory of communication'', first published in two parts in the July and October 1948 editions 
of the Bell System Technical Journal, a very important historical step, that boosted the need 
of implementation and integration of the deterministic as well as stochastic automate in 
computer and electrical devices.  
Further important elements in the History of Algorithm Development are also needed in 
order to create, apply or understand Hidden Markov Models: 
The expectation-maximization (EM) algorithm: The recent history of the expectation-
maximization algorithm is related with history of the Maximum-likelihood at the beginning 
of the 20th century (Kouemou 2010, Wikipedia). R. A. Fisher strongly used to recommend, 
analyze and make the Maximum-likelihood popular between 1912 and 1922, although it had 
been used earlier by Gauss, Laplace, Thiele, and F. Y. Edgeworth. Several years later the EM 
algorithm was explained and given its name in a paper 1977 by Arthur Dempster, Nan 
Laird, and Donald Rubin in the Journal of the Royal Statistical Society. They pointed out 
that the method had been "proposed many times in special circumstances" by other authors, 
but the 1977 paper generalized the method and developed the theory behind it. An 
expectation-maximization (EM) algorithm is used in statistics for finding maximum 
likelihood estimates of parameters in probabilistic models, where the model depends on 
unobserved latent variables. EM alternates between performing an expectation (E) step, 
which computes an expectation of the likelihood by including the latent variables as if they 
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were observed, and maximization (M) step, which computes the maximum likelihood 
estimates of the parameters by maximizing the expected likelihood found on the E step. The 
parameters found on the M step are then used to begin another E step, and the process is 
repeated. EM is frequently used for data clustering in machine learning and computer 
vision. In natural language processing, two prominent instances of the algorithm are the 
Baum-Welch algorithm (also known as "forward-backward") and the inside-outside 
algorithm for unsupervised induction of probabilistic context-free grammars. Mathematical 
and algorithmic basics of Expectation Maximization algorithm, specifically for HMM-
Applications, will be introduced in the following parts of this chapter.  
The Baum-Welch algorithm: The Baum–Welch algorithm is a particular case of a 
generalized expectation-maximization (GEM) algorithm (Kouemou 2010, Wikipedia). The 
Baum–Welch algorithm is used to find the unknown parameters of a hidden Markov model 
(HMM). It makes use of the forward-backward algorithm and is named for Leonard E. 
Baum and Lloyd R. Welch. One of the introducing papers for the Baum-Welch algorithm 
was presented 1970 "A maximization technique occurring in the statistical analysis of 
probabilistic functions of Markov chains", (Baum1970). Mathematical and algorithmic basics 
of the Baum-Welch algorithm specifically for HMM-Applications will be introduced in the 
following parts of this chapter. 
The Viterbi Algorithm: The Viterbi algorithm was conceived by Andrew Viterbi in 1967 as 
a decoding algorithm for convolution codes over noisy digital communication links. It is a 
dynamic programming algorithm (Kouemou 2010, Wikipedia). For finding the most likely 
sequence of hidden states, called the Viterbi path that results in a sequence of observed 
events. During the last years, this algorithm has found universal application in decoding the 
convolution codes, used for example in CDMA and GSM digital cellular, dial-up modems, 
satellite, deep-space communications, and 802.11 wireless LANs. It is now also commonly 
used in speech recognition applications, keyword spotting, computational linguistics, and 
bioinformatics. For example, in certain speech-to-text recognition devices, the acoustic signal 
is treated as the observed sequence of events, and a string of text is considered to be the 
"hidden cause" of the acoustic signal. The Viterbi algorithm finds the most likely string of 
text given the acoustic signal (Wikipedia, David Forney's). Mathematical and algorithmic 
basics of the Viterbi-Algorithm for HMM-Applications will be introduced in the following 
parts of this chapter. 
The chapter consists of the next following parts:  
• Part 2: Mathematical basics of Hidden Markov Models 
• Part 3: Basics of HMM in stochastic modelling 
• Part4: Types of Hidden Markov Models 
• Part5: Basics of HMM in signal processing applications 
• Part6: Conclusion and References 

2. Mathematical basics of Hidden Markov Models 
Definition of Hidden Markov Models 
A Hidden Markov Model (cf. Figure 1) is a finite learnable stochastic automate.  
It can be summarized as a kind of double stochastic process with the two following aspects: 
• The first stochastic process is a finite set of states, where each of them is generally 

associated with a multidimensional probability distribution. The transitions between 
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the different states are statistically organized by a set of probabilities called transition 
probabilities. 

• In the second stochastic process, in any state an event can be observed. Since we will 
just analyze what we observe without seeing at which states it occurred, the states are 
"hidden" to the observer, therefore the name "Hidden Markov Model".   

Each Hidden Markov Model is defined by states, state probabilities, transition probabilities, 
emission probabilities and initial probabilities.  
In order to define an HMM completely, the following five Elements have to be defined: 
1. The N states of the Model, defined by 

 { }1 ,..., NS S S=  (1)  

2. The M observation symbols per state { }1 ,..., MV v v= . If the observations are 
continuous then M is infinite. 

3. The State transition probability distribution { }ijA a= , where ija  is the probability that 
the state at time 1t + is jS , is given when the state at time t  is iS . The structure of this 
stochastic matrix defines the connection structure of the model. If a coefficient ija  is 
zero, it will remain zero even through the training process, so there will never be a 
transition from state iS  to 

 jS . { }1 | , 1 ,ij t ta p q j q i i j N+= = = ≤ ≤  (2) 

Where tq  denotes the current state. The transition probabilities should satisfy the 

normal stochastic constraints, 0, 1 ,ija i j N≥ ≤ ≤  and
1

1, 1
N

ij
j

a i N
=

= ≤ ≤∑ . 

4. The Observation symbol probability distribution in each state, { }( )jB b k=  where ( )jb k  
is the probability that symbol kv  is emitted in state jS . 

 { }( ) | , 1 , 1j t k tb k p o v q j j N k M= = = ≤ ≤ ≤ ≤  (3) 

where kv  denotes the thk  observation symbol in the alphabet, and to  the current 
parameter vector. 
The following stochastic constraints must be satisfied: 

( ) 0, 1 , 1jb k j N k M≥ ≤ ≤ ≤ ≤  and  
1

( ) 1, 1
M

j
k

b k j N
=

= ≤ ≤∑  

If the observations are continuous, then we will have to use a continuous probability 
density function, instead of a set of discrete probabilities. In this case we specify the 
parameters of the probability density function. Usually the probability density is 
approximated by a weighted sum of M Gaussian distributions N, 

 
1

( ) ( , , )
M

j t jm jm jm t
m

b o c N oμ
=

= Σ∑  (4) 

where jmc weighting coefficients= , jm mean vectorsμ = , and  
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jm Covariance matricesΣ = . jmc  should also satisfy the stochastic assumptions 

0, 1 , 1jmc j N m M≥ ≤ ≤ ≤ ≤   and  

1
1, 1

M

jm
m

c j N
=

= ≤ ≤∑  

5. The HMM is the initial state distribution { }iπ π= , where iπ   is the probability that the 
model is in state iS at the time 0t =  with  

 { }1 1i p q i and i Nπ = = ≤ ≤  (5) 

 

 
Fig. 1. Example of an HMM 

By defining the HMM it is also very important to clarify if the model will be discrete, 
continuing or a mix form (Kouemou 2007). 
The following notation is often used in the literature by several authors (Wikipedia):  

 ( ), ,A Bλ π=  (6) 

to denote a Discrete HMM, that means with discrete probability distributions, while 

 ( ), , , ,jm jm jmA cλ μ π= Σ  (7) 

is often  used to denote a Continuous HMM  that means with exploitations statics are based 
here on continuous densities functions or distributions.   
Application details to these different forms of HMM will be illustrated in the following parts 
of this chapter. 

3. Basics of HMM in stochastic modelling 
This part of the chapter is a sort of compendium from well known literature (Baum1970), 
(Huang1989), (Huang1990), (Kouemou2010), (Rabiner1986), (Rabiner1989), (Viterbi1967), 
(Warakagoda2010), (Wikipedia2010) in order to introduce the problematic of stochastic 
modelling using Hidden Markov Models. 
In this part some important aspects of modelling Hidden Markov Models in order to solve 
real problems, for example using clearly defined statistical rules, will be presented. The 
stochastic modelling of an HMM automate consist of two steps: 
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• The first step is to define the model architecture 
• The second to define the learning and operating algorithm  

3.1 Definition of HMM architecture 
The following diagram shows a generalized automate architecture of an operating HMM iλ  
with the two integrated stochastic processes. 
  

 
Fig. 2. Generalised Architecture of an operating Hidden Markov Model 

Each shape represents a random variable that can adopt any of a number of values. The 
random variable s(t) is the hidden state at time t. 
The random variable o(t) is the observation at the time t. The law of conditional probability of 
the Hidden Markov variable s(t) at the time t, knowing the values of the hidden variables at all 
times depends only on the value of the hidden variable s(t-1) at the time t-1. Every values 
before are not necessary anymore, so that the Markov property as defined before is satisfied.  
By the second stochastic process, the value of the observed variable o(t) depends on the 
value of the hidden variable s(t) also at the time t. 

3.2 Definition of the learning and operating algorithms – Three basic problems of 
HMMs 
The task of the learning algorithm is to find the best set of state transitions and observation 
(sometimes also called emission) probabilities. Therefore, an output sequence or a set of 
these sequences is given. 
In the following part we will first analyze the three well-known basic problems of Hidden 
Markov Models (Huang1990), (Kouemou2000), (Rabiner1989), (Warakagoda(2009): 
1. The Evaluation Problem 

What is the probability that the given observations 1 2, ,..., TO o o o=  are generated by the 
model { }|p O λ  with a given HMM λ ? 
2. The Decoding Problem 

What is the most likely state sequence in the given model λ  that produced the given 
observations 1 2, ,..., TO o o o= ? 
3. The Learning Problem 

How should we adjust the model parameters { }, ,A B π  in order to maximize { }|p O λ , 
whereat a model λ  and a sequence of observations 1 2, ,..., TO o o o=  are given? 
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The evaluation problem can be used for isolated (word) recognition. Decoding problem is 
related to the continuous recognition as well as to the segmentation. Learning problem must 
be solved, if we want to train an HMM for the subsequent use of recognition tasks. 

3.2.1 The evaluation problem and the forward algorithm 
Given a model ( ), ,A Bλ π=  and a sequence of observations 1 2, ,..., TO o o o= , { }|p O λ  needs 
to be found. Although this quantity can be calculated by the use of simple probabilistic 
arguments, it is not very practicable because the calculation involves number of operations 
in the order of TN . But fortunately there is another calculation method with considerably 
low complexity that uses an auxiliary variable 

 { }1 2( ) , ,..., , |t t ti p o o o q iα λ= =  (8) 

( )t iα  is called forward variable, and 1 2, ,..., To o o  is the partial observation sequence.  
Out of this, the recursive relationship 

 1 1
1

( ) ( ) ( ) , 1 , 1 1
N

t j t t ij
i

j b o i o j N t Tα α+ +
=

= ≤ ≤ ≤ ≤ −∑  (9) 

with 1 1( ) ( ), 1j jj b o j Nα π= ≤ ≤  follows. 

( ), 1T i i Nα ≤ ≤  can be calculated using this recursion. So the required probability is given 
by 

 { }
1

| ( )
N

T
i

p O iλ α
=

= ∑  (10) 

This method is commonly known as the forward algorithm.  
The backward variable ( )t iβ  can be defined similar.  

 { }1 2( ) , ,..., | ,t t t t ti p o o o q iβ λ+ += =  (11) 

Given that the current state is i, ( )t iβ  is the probability of the partial observation 
sequence 1 2, ,...,t t To o o+ + . 

( )t iβ can also be calculated efficiently by using a recursive  

 1 1
1

( ) ( ) ( ), 1 , 1 1
N

t t ij j t
j

i j a b o i N t Tβ β + +
=

= ≤ ≤ ≤ ≤ −∑  (12) 

where ( ) 1, 1T i i Nβ = ≤ ≤  
Further we can see that, 

 { }( ) ( ) , | , 1 , 1t t ti i p O q i i N t Tα β λ= = ≤ ≤ ≤ ≤  (13) 

So there are two ways to calculate { }|p O λ , either using forward or backward variable: 

 { } { }
1 1

| , | ( ) ( )
N N

t t t
i i

p O p O q i i iλ λ α β
= =

= = =∑ ∑  (14) 
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This equation can be very useful, especially in deriving the formulas required for gradient 
based training. 

3.2.2 The decoding problem and the Viterbi algorithm 
Given a sequence of observations 1 2, ,..., TO o o o=  and a model ( ), ,A Bλ π= , we search for 
the most likely state sequence.  
The definition of “likely state sequence” influences the solution of this problem. In one 
approach, we want to find the most likely state tq  and to concatenate all such ' tq 's. But 
because this approach sometimes does not result in a meaningful state sequence, we want to 
use another method, commonly known as Viterbi algorithm. Using the Viterbi algorithm, 
the whole state sequence with maximum likelihood is found.  
An auxiliary variable is defined that gives the highest probability that partial observation 
sequence and state sequence up to t=t can have, given the current state is i. 

 { }
1 2 1

1 2 1 1 2 1, ...
( ) max , ,..., , , , ,..., |

t
t t t tq q q

i p q q q q i o o oδ λ
−

− −= =  (15) 

It follows that 

 1 1 1
( ) ( ) max ( ) , 1 , 1 1t j t t iji N
j b o i a i N t Tδ δ+ +

≤ ≤

⎡ ⎤= ≤ ≤ ≤ ≤ −⎢ ⎥⎣ ⎦
 (16) 

with 1 1( ) ( ), 1j jj b o j Nδ π= ≤ ≤  

So we start from the calculation of ( ), 1T j j Nδ ≤ ≤  to calculate the most likely state 
sequence. We always keep a pointer to the ”winning state” in the maximum finding 
operation. It results in state *j , where 

1
* arg max ( )Tj N

j jδ
≤ ≤

= . We start from this state and 
back-track the sequence of states as the pointer in each state indicates. So we get the 
required set of states.  
This whole algorithm can be interpreted as a search in a graph whose nodes are formed by 
the states of the HMM in each of the time instant  , 1t t T≤ ≤ . 

3.2.3 The Learning roblem 
How can we adjust the HMM parameters in a way that a given set of observations (the 
training set) is represented by the model in the best way for the intended application? 
Depending on the application, the “quantity” that should be optimized during the learning 
process differs. So there are several optimization criteria for learning. 
In literature, we can find two main optimization criteria: Maximum Likelihood (ML) and 
Maximum Mutual Information (MMI). The solutions for these criteria are described below. 
3.2.3.1 Maximum Likelihood (ML) criterion 

Given the HMM wλ  of the class w, we try to maximize the probability of a given sequence of 
observations wO , belonging to a given class w, corresponding to the parameters of the 
model wλ . Mathematically, this likelihood can be expressed as 

 { }|w
tot wL p O λ=  (17) 
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Dropping the subscript and superscript 'w's because we consider only one class w at a time, 
the ML can be given as 

 { }|totL p O λ=  (18) 

The model ( ), ,A Bλ π=  that maximizes the quantity totL  cannot be solved analytically as 
there is known way for it. Using an iterative procedure, like Baum-Welch or a gradient 
based method, we can locally maximize it by choosing appropriate model parameters. 
3.2.3.1.1 Baum-Welch Algorithm 

The Baum-Welch algorithm is also known as Forward-Backward algorithm (Baum 1966), 
(Baum1970), (Rabiner1989). 
This method can be derived as well known in the literature by using simple “occurrence 
counting” arguments or using calculus to maximize the auxiliary quantity 

 { } { }( , ) | , log , ,
q

Q p q O p O qλ λ λ λ⎡ ⎤= ⎣ ⎦∑  (19) 

over λ . 
Additionally to the forward and backward variables we need to define two more auxiliary 
variables. 
The first one of these variables is 

 { }1( , ) , | ,t t ti j p q i q j Oξ λ+= = =  (20) 

which can also be written as 

 { }
{ }

1, , |
( , )

|
t t

t
p q i q j O

i j
p O

λ
ξ

λ
+= =

=  (21) 

We can use forward and backward variables and these result in 

 1 1

1 1
1 1

( ) ( ) ( )
( , )

( ) ( ) ( )

t ij t j t
t N N

t ij t j t
i j

i a j b o
i j

i a j b o

α β
ξ

α β

+ +

+ +
= =

=

∑∑
 (22) 

The second variable is the a posteriori probability, 

 { }( ) | ,t ti p q i Oγ λ= =  (23) 

In forward and backward variables this can be expressed by, 

 

1

( ) ( )( )
( ) ( )

t t
t N

t t
i

i ii
i i

α βγ
α β

=

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
∑

 (24) 

So we can see that the relationship between ( )t iγ  and ( , )t i jξ  is given by, 
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1

( ) ( , ), 1 , 1
N

t t
j

i i j i N t Mγ ξ
=

= ≤ ≤ ≤ ≤∑  (25) 

To maximize the quantity { }|p O λ , we can now describe the Baum-Welch learning process.  
We assume a starting model ( ), ,A Bλ π=  and calculate the 'α 's and ' β 's. After this, we 
calculate the 'ξ  's and ' γ 's. The next equations are known as re-estimation formulas and are 
used to update the HMM parameters: 

 1( ), 1i i i Nπ γ= ≤ ≤  (26) 

 

1

1
1

1

( , )
, 1 , 1

( )

T

t
t

ij T

t
t

i j
a i N j N

i

ξ

γ

−

=
−

=

= ≤ ≤ ≤ ≤
∑

∑
 (27) 

 
1

1

( )

( ) , 1 , 1
( )

t k

T

t
t

o
j T

t
t

j

b k j N k M
j

ν

γ

γ

=
=

=

= ≤ ≤ ≤ ≤

∑

∑
 (28) 

These reestimation formulas can easily be modified to deal with the continuous density case 
too. 
3.2.3.1.2 HMM Parameter Optimization  

The optimization of the parameter κ  of a given HMM λ is usually done by using Gradient 
related algorithms like shown in the following equation: 

 
1

1

t

t t

κ

ψκ κ ς
κ −

− ∂⎡ ⎤= − ⎢ ⎥∂⎣ ⎦
 (29) 

By defining  

 { }( )log p Oψ λ= −  (30) 

in order to find the maximum likelihood, the equation ψ
κ

∂
∂

for any parameter κ of the HMM 

λ has to be solved in order the minimized ψ . 
The calculated ψ  is therefore the expected Maximum Likelihood obtained by maximizing 

tκ .   
By associating ψ to the HMM model parameters introduced above (see equation 14), we 
then obtain 

 { }
1 1

, ( ) ( )
N N

tot t t t
i i

L p O q i i iλ α β
= =

= = =∑ ∑  (31) 
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The differentiation of the last equality in the equations (29) and (30) relative to the parameter 
κ of the HMM gives 

 1 tot

tot

L
L

ψ
κ κ

∂∂
= −

∂ ∂
 (32) 

The Equation (32) calculates ψ
κ

∂
∂

 under the assumption, that totL
κ

∂
∂

 is solvable. But this 

derivative depends on all the actual parameter of the HMM. 
On the one side there are the transition probabilities , 1 ,ij i N jα ≤ ≥  and on the other side 
the observation probabilities { } { }( ), 1,..., , 1,...,jb k j N k M∈ ∈ . For this reason we have to find 
the derivative for the both probabilities sets and therefore their gradient. 
a) Maximum likelihood gradient depending on transition probabilities 

In order to calculate the gradient depending on transition probabilities, the Markov rule is 
usually assumed like following: 

 
1

( )
( )

T
ttot tot

ij t ijt

jL L
j

α
α α α=

∂∂ ∂
=

∂ ∂ ∂∑  (33) 

The simple differentiation 

 ( )
( )
tot

t
t

L j
j

β
α
∂

=
∂

 (34) 

as well as the time delay differentiation  

 1
( ) ( ) ( )t

j t t
ij

j b iα
α α

α −
∂

=
∂

 (35) 

gives after parameter substitutions the well known result 

  1
1

1 ( ) ( ) ( )
T

t j t t
ij tot t

j b i
L

ψ β α α
α −

=

∂
= −

∂ ∑  (36) 

b) Maximum Likelihood gradient depending on observation probabilities 

In a similar matter as introduced above, the gradient depending on observation probabilities 
using the Markov rule is calculated.   
With  

 ( )
( ) ( ) ( )

ttot tot

j t t j t

jL L
b o j b o

α
α

∂∂ ∂
=

∂ ∂ ∂
 (37) 

and  

 ( ) ( )
( ) ( )
t t

j t j t

j j
b o b o
α α∂

=
∂

 (38) 
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the estimation probability is then calculated and results to 

 ( ) ( )1
( ) ( )

t t

j t tot j t

j j
b o L b o

α βψ∂
= −

∂
. (39) 

In the case of "Continuous Hidden-Markov-Models" or "Semi-Continuous Hidden-Markov-

Models" the densities , ,
jm jm jmc
ψ ψ ψ

μ
∂ ∂ ∂
∂ ∂ ∂∑

are usually calculated similarly by just further 

propagating the derivative 
( )j tb o
ψ∂

∂
assuming the Markov chain rules. 

3.2.3.2 Maximum Mutual Information (MMI) criterion 
Generally, in order to solve problems using Hidden Markov Models for example for 
engineering pattern recognition applications, there are two general types of stochastic 
optimization processes: on the one side, the Maximum Likelihood optimization process and 
on the other side the Maximum Mutual Information Process. The role of the Maximum 
Likelihood is to optimize the different parameters of a single given HMM class at a time 
independent of the HMM Parameters of the rest classes. This procedure will be repeated for 
every other HMM for each other class.  
In addition to the Maximum Likelihood, differences of the Maximum Mutual Infomation 
Methods are usually used in practice in order to solve the discrimination problematic in 
pattern recognition applications between every class that has to be recognized in a given 
problem. At the end one can obtain a special robust trained HMM-based system, thanks to 
the well known "discriminative training methodics".  
The basics of the Minimum Mutual Information calculations can be introduced by assuming 
a set of HMMs 

 { }{ }, 1,...,Vνλ νΛ = ∈  (40) 

of a given pattern recognition problem. 
The purpose of the optimization criterion will consist here of minimizing the "conditional 
uncertainty" ν of one "complete unit by a given real world problem" given an observation 
sequence sO  of that class.  

 ( ) { }, log ,s sI v O p v OΛ = − Λ  (41) 

This results in an art of minimization of the conditional entropy H, that can be also defined 
as the expectation of the conditional information I:   

 ( ) { },sH V O E v O⎡ ⎤= Λ⎢ ⎥⎣ ⎦
 (42) 

in which V is the set of all classes and O is the set of all observation sequences. 
Therefore, the mutual information between the classes and observations  

 ( ) ( ) ( )SH V O H V H V O= −  (43) 
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is a maximized constant with ( )H V , hence the name "Maximum Mutual Information" 
criterion (MMI). 
In many literatures this technique is also well known as the "Maximum à Posteriori" method 
(MAP). 
Generally Definition and Basics of the "Maximum à Posteriori" Estimation: 

In Bayesian statistics, a maximum a posteriori probability (MAP) estimate is a mode of the 
posterior distribution. The MAP can be used to obtain a point estimate of an unobserved 
quantity on the basis of empirical data. It is closely related to Fisher's method of maximum 
likelihood (ML), but employs an augmented optimization objective which incorporates a 
prior distribution over the quantity one wants to estimate. MAP estimation can therefore be 
seen as a regularization of ML estimation. 
Generally Description of the "Maximum à Posteriori" Estimation: 

Assume that we want to estimate an unobserved Markov Model λ  on the basis of 
observations o. By defining f as the sampling distribution of the observations o, so 
that ( )f o λ  is the probability of o when the underlying Markov Model is λ . The 
function ( )f oλ λ  can be defined as the likelihood function, so the estimate 

 ˆ ( ) arg max ( )ML o f o
λ

λ λ=  (44) 

is the maximum likelihood estimate of the Markov Model λ . 
Now when we assume that a prior distribution χ over the models λ exists, we can treat 
λ as a random variable as in the classical Bayesian statistics.  
The posterior distribution of λ is therefore:  

 ( )
'

'

' ' '

( ) ( )
( ) ( )

f o
f o

f o
λ

λ χ λ
λ λ

λ χ λ λ
∈Λ

=
∂∫

 (45) 

where χ  is the density function of λ  and Λ  is the domain of χ as application of the Bayes' 
theorem. 
The method of maximum a posteriori estimation then estimates the Markov Model λ  as the 
mode of the posterior distribution of this random variable: 

 

'

' ' '

( ) ( )ˆ ( ) arg max arg max ( ) ( )
( ) ( )ML

f o
o f o

f oλ λ

λ

λ χ λ
λ λ χ λ

λ χ λ λ
∈Λ

= =
∂∫

 (46) 

The denominator of the posterior distribution does not depend on λ and therefore plays no 
role in the optimization. The MAP estimate of the Markov Modells λ  coincides with the ML 
estimate when the prior χ  is uniform (that is, a constant function). The MAP estimate is a 
limit of Bayes estimators under a sequence of 0-1 loss functions. 
Application of the "Maximum à Posteriori" for the HMM 

According to these basics of the "Maximum à Posteriori" above, the posteriori probability 
{ },cp Oν Λ  is maximised when the MMI criteria yields using the Bayes theorem to: 
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(47)

 
where ω   is any possible class. 
By using similar notation as in (17), the likelihoods can be written as following: 

 { },correct c
totL p Oν λ=  (48) 

 { },others c
totL p O

ω
ω λ=∑  (49) 

where indices "correct" and "others" distinguish between the correct class and all the other 
classes. 
From the both equation above we then obtain expectations of the MMI or MAP as: 

 log
correct
tot

MAP MMI other
tot

LE E
L

= = −  (50) 

In analogy to the Maximum Likelihood, in order to minimize MMIE , we can assume that 

MMIEψ = , and derive the gradients after ψ
κ

∂
∂

 using the well known gradient related 

algorithms, where κ is an arbitrary parameter of the whole set of HMMs, Λ . 
In analogy to the Maximum Likelihood estimation methods above, we then obtain 

 κκκ
ψ

∂
∂

−
∂

∂
=

∂
∂ correct

tot
correct
tot

others
tot

others
tot

L
L

L
L

11

 
(51) 

 

with ( ) ( )correct
tot t t

i class
L i i

υ
α β

∈
= ∑  and ( ) ( )others

tot t t
i class w

L i i
ω

α β
∈

=∑ ∑ . 

With the same procedure as for the Maximum Likelihood, the transition and observation 
probabilities must also be calculated as illustrated in the next steps by using the general law 
of the Markov chain. 
a) Maximum Mutual Information gradient depending on transition probabilities 

By using the well known Kronecker symbol kvδ , the calculation basics then yields to  

 
( ) ( )

1

( )
( )

correct or others correct or othersT
ttot tot

ij t iji

jL L
j

α
α α α=

∂∂ ∂
=

∂ ∂ ∂∑  (52)  

with  

 

( )

1
1

( ) ( ) ( )
correct T
tot

kv t j t t
ij i

L j b o i

i class k

δ β α
α −

=

∂
= ∂

∂

∈

∑  (53) 
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and 

 
( )

1
1

( ) ( ) ( )
others T

tot
t j t t

ij i

L j b o iβ α
α −

=

∂
=

∂ ∑  (54) 

 

After simplification one obtain 

 1( ) ( )
1

1 ( ) ( ) ( )
T

kv
t j t tothers correct

ij itot tot
j b o i

L L
i class k

δψ β α
α −

=

⎡ ⎤∂
= −⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
∈

∑ . (55) 

b) Maximum Mutual Information gradient depending on observation probabilities 
The calculation of the Maximum Mutual Information gradient depending on observation 
probabilities is similar to the description above according to the Markov chain rules as 
following: 

 
( ) ( ) ( )

( ) ( ) ( )

correct or others correct or others
ttot tot

j t t j t

jL L
b o j b o

α
α

∂∂ ∂
=

∂ ∂ ∂
. (56) 

After differentiation after ( )t jα and simplification using the Kronecker function kvδ , the 
"correct" as well as the "others" variant are extracted usually as following:  

 
( ) ( )

( ) ( )

correct
t ttot

kv
j t j t

j jL
b o b o

j class k

α β
δ∂

=
∂

∈

 (57) 

 

and 

 ( ) ( )
( ) ( )

others
t ttot

j t j t

j jL
b o b o

α β∂
=

∂
 (58) 

 

After further simplifications one obtain 

 
( ) ( )1

( ) ( )
t tkv

others correct
j t j ttot tot

j j
b o b oL L

j class k

α βδ⎡ ⎤∂Ψ
= −⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
∈

 (59) 

 

With 
( ) ( )( )correct t t

t kv correct
tot

j jj
L

j class k

α β
γ δ=

∈

and ( ) ( )( )others t t
t correct

tot

j jj
L

α β
γ =  

follows: 

 1 ( ) ( )
( ) ( )

others correct
t t

j t j t
j j

b o b o
γ γ∂Ψ ⎡ ⎤= −⎣ ⎦∂

. (60) 
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4. Types of Hidden Markov Models 
Nowadays, depending on problem complexities, signal processing requirements and 
applications, it is indispensable to choose the appropriate type of HMM very early in the 
concept and design phase of modern HMM based systems. In this part different types of 
HMMs will be introduced and some generalized criteria will be shown for how to choose 
the right type in order to solve different kinds of problems (Huang1989), (Kouemou2008), 
(Rabiner1989). 

4.1 Discrete HMM 
Problematic: assuming that we have continuous valued feature vectors we will summarize 
in this section how to use Discrete Hidden Markov Models to solve this problem. 
Generalized Methodology: the following three steps have to be processed:  
1. A set of d-dimensional real valued vectors should be reduced to k d-dimensional 

vectors  vector quantization by codebook (k-means cluster algorithm) 
2. Find the nearest codebook vector for the current feature vector 
3. Use the index of this codebook vector for DHMM emission symbol / input 
The following diagram illustrates the generalized steps needed. 
 

 
Fig. 3. Simplified Generation Procedure of a codebook by "Discrete Hidden Markov Model" 

Details can be read in (Huang1989), (Kouemou2008), (Rabiner1989), (Warakagoda2010). 

4.2 Continuous HMM 
It is assumed that the output pdf can be written as  

 
1

( ) ( | )
K

t jk jk
k

b x c N x θ
=

= ∑  (61) 

with 
1

1
K

jk
k

c
=

=∑ , where jkc  is the mixture coefficient and ( | )jkN x θ  is the Gaussian density. 

For each state K multivariate Gaussian densities and K mixture coefficients have to be 
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estimated. This result in the following parameters for each state: covariance matrix, mean 
vector and mixture coefficients vector. 
A continuous Hidden Markov Model is a three-layered stochastic process. The first part is, 
equal to DHMM, the selection of the next state. The second and the third part are similar to 
the selection of emission symbol with DHMM, whereas the second part of CHMM is the 
selection of the mixture density by mixture coefficient. The selection of the output symbol 
(vector) by the Gaussian density is the third and last part. 
The classification and training algorithms have to be modified. There are only minor 
changes in the classification algorithm: the modified probability densities have to be 
substituted. The Baum-Welch/Viterbi trainings algorithms have to be modified by 
additional calculation. 
The disadvantage is a high computational effort. The Gaussian distributions have to be 
evaluated and the high number of parameters probably may result in instabilities. 
 

 
Fig. 4. Illustration of exemplary statistical distributions by continuous "Hidden Markov 
Models" 
Details can be read in (Huang1989), (Kouemou2008), (Rabiner1989), (Warakagoda2010). 

4.3 Semi-continuous HMM 
The semi-continuous HMM can be seen as a compromise between DHMM and CHMM. It is 
assumed that the output pdf can be written as  

 
1

( ) ( | )
K

t jk k
k

b x c P x θ
=

= ∑  (62) 

with 
1

1
K

jk
k

c
=

=∑ , where jkc  is the mixture coefficient and ( | )kP x θ  the Gaussian distribution. 

Overall, K multivariate Gaussian distributions and K mixture coefficients have to be 
estimated. In contrast to the CHMM, we the same set of Gaussian mixture densities is used 
for all states. 
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Fig. 5. Simple Illustration of the densities distribution CHMM vs. SCHMM.   

Like the CHMM, the SCHMM is a three-layered stochastic process. After the next state has 
been selected, there will be the selection of the mixture density by the mixture coefficient. 
Third, the output symbol (vector) has to be selected by Gaussian density. The second and 
third step is similar to the selection of emission symbol with DHMM. There have to be some 
modifications of classification and training algorithms, too. For classification algorithm, the 
modified probability densities have to be modified and the Baum-Welch/Viterbi training 
algorithm are modified by additional calculations. 
The disadvantage is a high computational effort. The Gaussian distributions have to be 
evaluated and the high number of parameters probably may result in instabilities. 
Altogether, the modifications are similar to those in the CHMM, but the number of 
parameters is reduces significantly. 
Details can be read in (Huang1989), (Kouemou2008), (Rabiner1989), (Warakagoda2010). 

5. Basics of HMM in modern engineering processing applications 
Nowadays, Hidden Markov Models are used in a lot of well-known systems all over the 
world. In this part of the chapter some general recommendations to be respected by creating 
an HMM for operational applications will first be introduced, followed by practical 
examples in the financial word, bioinformatics and speech recognition. This chapter part 
consists of the following under chapters: 
• 5.1. General recommendations for creating HMMs in the practice 
• 5.2. Application Examples in Financial Mathematics World, Bank and Assurances 
• 5.3. Application Example in Bioinformatics and Genetics 
• 5.4. Speech recognition and further Application Examples  

5.1 General recommendations for creating HMMs in the practice  
5.1.1 Creation of HMM architecture 
The basis for creating an HMM for practical applications is a good understanding of the real 
world problem, e.g. the physical, chemical, biological or social behaviour of the process that 
should be modelled as well as its stochastic components. The first step is to check if the laws 
for Markov chains are fulfilled, that means if it is a Markov process as defined above. 
If these laws are fulfilled, exemplary models can be structured with the help of the 
understanding of the relationships between the states of each Markov Model. Deterministic 
and stochastic characteristics in the process shall be clearly separated. After all of these steps 
are executed, the technical requirements of the system also have to be taken into 
consideration. It is very important to consider the specification of the signal processor in the 
running device. 
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5.1.2 Learning or adapting an HMM to a given real problem 
First of all, different elements of the real problem to be analyzed have to be disaggregated in 
a form of Markov models. A set of Hidden Markov Models has to be defined that represents 
the whole real world problem. There are several points that have to be kept in mind, e.g. 
What should be recognized?, What is the input into the model, what is the output? 
The whole learning process is done in two steps. In the first step learning data have to be 
organized, e.g. by performing measurements and data recording. If measurement is too 
complex or not possible, one can also recommend using simulated data. During the second 
step the learning session is started, that means the Markov parameters as explained in the 
chapters above are adapted. 

5.2 Application examples in financial mathematics world, bank and assurances 
Nowadays, many authors are known from literature for using HMMs and derivative in 
order to solve problems in the world of financial mathematics, banking and assurance 
(Ince2005), (Knab2000), (Knab2003), (Wichern2001). The following example was published 
by B. Knapp et.al. “Model-based clustering with Hidden Markov Model and its application 
to financial time-series data” and presents a method for clustering data which must be 
performed well for the task of generating statistic models for prediction of loan bank 
customer collectives. The generated clusters represent groups of customers with similar 
behaviour. The prediction quality exceeds the previously used k-mean based approach. 
The following diagram gives an overview over the results of their experiment: 
 

 
Fig. 6. Example of a Hidden Markov Model used by Knap et.al. in order to model the three 
phases of a loan banking contract 

5.3 Application example in bioinformatics and genetics 
Other areas where the use of HMMs and derivatives becomes more and more interesting are 
biosciences, bioinformatics and genetics (Asai1993), (Schliep2003), (Won2004), (Yada1994), 
(Yada1996), (Yada1998).  
A. Schliep et al., presented 2003 for example, in the paper “Using hidden Markov models to 
analyze gene expression time course data”, a practical method which aim "to account for the  



 Hidden Markov Models, Theory and Applications 

 

22 

 
Fig. 7. Exemplary results of Knap et.al: examined “sum of relative saving amount per 
sequence” of the real data of bank customers and a prediction of three different models. 
 

 
Fig. 8. Flow diagram of the Genetic Algorithm Hidden Markov Models (GA-HMM) 
algorithm according to K.J. Won et.al. 
horizontal dependencies along the time axis in time course data" and "to cope with the 
prevalent errors and missing values" while observing, analysing and predicting the 
behaviour of gene data. 
The experiments and evaluations were simulated using the "ghmm-software", a freely 
available tool of the "Max Planck Institute for Molecular Genetics", in Berlin Germany 
(GHMM2010). 
K.J. Won et.al. presented, 2004, in the paper “Training HMM Structure with Genetic 
Algorithm for Biological Sequence Analysis” a training strategy using genetic algorithms for 
HMMs (GA-HMM). The purpose of that algorithm consists of using genetic algorithm and is 
tested on finding HMM structures for the promoter and coding region of the bacterium 
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C.jejuni. It also allows HMMs with different numbers of states to evolve. In order to prevent 
over-fitting, a separate data set is used for comparing the performance of the HMMs to that 
used for the Baum-Welch-Training. K.J. Won et.al. found out that the GA-HMM was capable 
of finding an HMM, comparable to a hand-coded HMM designed for the same task. The 
following figure shows the flow diagram of the published GA-HMM algorithm. 
 

                
Fig. 9. Result during GA-HMM training after K.J. Won et.al.: (a) shows the fitness value of 
fittest individual on each iteration (b) shows average number of states for periodic signal. 
The GA started with a population consisting of 2 states. After 150 generations the HMM 
have a length of 10 states. Although the length does not significantly change thereafter the 
fitness continues to improve indicating that the finer structure is being fine tuned. 
 

 
Fig. 10. Exemplary result of the GA-HMM structure model for a given periodic signal after 
training the C.jejuni sequences (K.J. Won). 

5.4 Speech recognition and further application examples 
Hidden Markov Models are also used in many other areas in modern sciences or 
engineering applications, e.g. in temporal pattern recognition such as speech, handwriting, 
gesture recognition, part-of-speech tagging, musical score following, partial discharges. 
Some authors even used HMM in order to explain or predict the behaviour of persons or 
group of persons in the area of social sciences or politics (Schrodt1998). 
One of the leading application area were the HMMs are still predominant is the area of 
"speech recognition" (Baum1970), (Burke1958), (Charniak1993), (Huang1989), (Huang1990), 
(Lee1989,1), (Lee1989,2), (Lee1990), (Rabiner1989). 
In all applications presented in this chapter, the "confusions matrices" is widely spread in 
order to evaluate the performance of HMM-based-Systems. Each row of the matrix 
represents the instances in a predicted class, while each column represents the instances in 
an actual class. One benefit of a confusion matrix is that it is easy to see if the system is 
confusing two classes (i.e. commonly mislabelling one as another). When a data set is 
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unbalanced, this usually happens when the number of samples in different classes varies 
greatly, the error rate of a classifier is not representative of the true performance of the 
classifier. This can easily be understood by an example: If there are 980 samples from class 1 
and only 20 samples from class 2, the classifier can easily be biased towards class 1. If the 
classifier classifies all the samples as class 1, the accuracy will be 98%. This is not a good 
indication of the classifier's true performance. The classifier has a 100% recognition rate for 
class 1 but a 0% recognition rate for class 2. 
The following diagram shows a simplified confusion-matrix of a specified character 
recognition device for the words "A","B","C","D","E" of the German language using a very 
simple "HMM-Model", trained data from 10 different persons and tested on 20 different 
persons, only for illustration purpose.  
 

"A" 99,5 0 0 0 0 0,5 

"B" 0 95 1,4 1,6 0,5 1,5 

"C" 0 1,7 95,1 1,3 0,7 1,2 

"D" 0 1 1,6 95,7 0,4 1,3 

"Predicted" or "labeled as" "E" 0 0,1 0,05 0,05 99,6 0,2 

"A" "B" "C" "D" "E" rejected 
 

"Actual" or "Recognized as" or "Classified as" 

Table: Example of a Confusion Matrix for simple word recognition in the German language. 

Depending on the values of the confusion matrix one call also derive typical performances 
of the HMM-based automate like: the general correct classification rate, the general false 
classification rate, the general confidences or sensitivities of the classifiers. 

6. Conclusion 
In this chapter the history and fundamentals of Hidden Markov Models were shown. The 
important basics and frameworks of mathematical modelling were introduced. 
Furthermore, some examples of HMMs and how they can be applied were introduced and 
discussed focussed on real engineering problems. 
For more detailed analysis a considerable list of literature and state of the art is given. 
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1. Introduction

Over the past few decades, Hidden Markov models HMMs have been widely applied as a
data-driven modeling approach in automatic speech recognition (Rabiner, 1989). In this field,
signals are encoded as temporal variation of a short time power spectrum. HMMs applications
are now being extended to many fields such as pattern recognition (Fink, 2008); signal
processing (Vaseghi, 2006); telecommunication (Hirsch, 2001); bioinformatics (Baldi et al.,
2001), just to name a few applications.
Recently, HMMs represent in a natural way the individual component states of a
dynamic system. This fact make them useful in biomedical signal analysis and in medical
diagnosis (Al-ani et al., 2004; 2008; Al-ani & Trad, 2010a; Daidone et al., 2006; Helmy et al.,
2008; Novák et al., 2004a;b;c;d). For the same reason, they are used in fault detection and
mechanical systemmonitoring (Al-ani & Hamam, 2006; Bunks et al., 2000; Heck &McClellan,
1991; Miao et al., 2007; Smyth, 1994) as well inmodelling, identification and control of dynamic
systems (Elliot et al., 2004; Frankel, 2003; Fraser, 2010; Kwon1 et al., 2006; Myers et al., 1992;
Tsontzos et al., 2007; Wren et al., 2000). An HMM may be used also to describe discrete
stochastic changes in the system and then folds in the continuous dynamics, by associating
a set of dynamic and algebraic equations with each HMMmode1. This leads to a model called
probabilistic hybrid automaton (PHA) for short hybrid complex Systems (Hofbaur, 2005).
In these fields, it is essential to effectively learn all model parameters from a large amount of
training data according to certain training criteria. It has been shown that success of HMMs
highly depends on the goodness of estimated models and the underlying modeling technique
plays an critical role in the final system performance.
The objective of this chapter is to sensitize the reader on two problems related to conventional
HMMs which are important for dynamic system modelling and diagnosis: the training
problem and the data-driven selection methods of the structure for the constructed HMM and
then to introduce two application examples of HMMs in diagnosis of mechanical and medical
dynamic systems.
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2. Hidden Markov Models (HMMs)

This section introduces briefly the mathematical definition of Hidden Markov Models. We
introduce only their conventional training aspects. The notations will be done to remain in the
contexts cited by Rabiner (Rabiner, 1989).
The HMMs are double stochastic processes with one underlying process (state sequence) that
is not observable but may be estimated through a set of processes that produce a sequence
of observations. HMMs are a dominant technique for sequence analysis and they owe their
success to the existence of many efficient and reliable algorithms.
Consider a discrete time Markov chain with a finite set of states S = {s1, s2, ..., sN}. A HMM
is defined by the following compact notation to indicate the complete parameter set of the
model λ = (Π,A,B) where Π, A and B are the initial state distribution vector, matrix of state
transition probabilities and the set of the observation probability distribution in each state,
respectively (Rabiner, 1989).

Π = [π1,π2, ...,πN ], πi = P(q1 = si),A = [aij], aij = P(qt+1 = sj|qt = si),

1 ≤ i, j ≤ N, si, sj ∈ S, t ∈ {1, 2, ...,T}. In the rest of this chapter, the states si and sj will be
written as i and j respectively for simplicity.
The observation at time t, Ot , may be a discrete symbol (Discrete HMMs (DHMMs) case),
Ot = vk, vk ∈ V = {v1, v2, ..., vM}, or continuous, Ot ∈ RK. For a discrete observation, vk will
be written as z for simplicity.
The observation matrix B is defined by B = [bi(Ot)], where bi(Ot) is the state conditional
probability of the observation Ot defined by bi(Ot) = P(Ot = z|qt = i), 1 ≤ i ≤ N, 1 ≤ z ≤
M. For a continuous observation (Continuous HMMs (CHMMs) case), bi(Ot) is defined by a
finite mixture of any log-concave or elliptically symmetric probability density function (pd f ),
e.g. Gaussian pd f , with state conditional observation mean vector μi and state conditional
observation covariance matrix Σi, so B may be defined as B = {μi, Σi}, i = 1, 2, ..., N. The
model parameters constraints for 1 ≤ i, j ≤ N are

N

∑
i=1

πi = 1,
N

∑
j=1

aij = 1, aij ≥ 0,
M

∑
k=1

bi(Ot = z) = 1 or
∫ ∞

−∞
bi(Ot)dOt = 1.

In the case of left-to-right HMMs (Rabiner, 1989), multiple observation sequencesmust be used.
Unlike the ergodic HMM case, the left-to-right HMM necessitates taking into account that the
initial state probability is always equal to one. Thus, all the sequences are supposed to start
with the same state. In this work, the specific structures are taken into account by weighting
the values of the elements of thematrix A. The weights are defined by zeros and ones elements
corresponding to the structure of the matrix A.
In general, at each instant of time t, the model is in one of the states i, 1 ≤ i ≤ N. It outputs
Ot according to a discrete probability (in the DHMMs case) or according to a a continuous
density function (in the CHMM case) bj(Ot) and then jumps to state j, 1 ≤ j ≤ N with
probability aij. The state transition matrix defines the structure of the HMM (Rabiner, 1989).
The model λ may be obtained off-line using some training algorithm. In practice, given the
observation sequence O = {O1 O2 ... OT}, and amodel λ, the HMMs need three fundamental
problems to be solved. Problem1 is how to calculate the likelihood P(O|λ)? The solution to
this problem provides a score of how O belongs to the model λ. Problem 2 is how to determine
the most likely state sequence that corresponds to O? The solution to this problem provides
the sequence of the hidden states corresponding to the given observation sequence O. Problem
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3 is how to adjust the model λ in order to maximize P(O|λ)? This is the problem of estimating
the model parameters given a corpus of training observations sequences. Problems 1 and 2
are solved in the decoding stage using either the forward probability (Rabiner, 1989) or the
Viterbi decoding algorithm (Viterbi, 1967), while problem 3 is solved during the training stage
using either a conventional algorithm such as the Baum-Welch algorithm and the Viterbi-based
algorithm, known as segmental K-mean in the case of CHMMs (Rabiner et al., 1986; Rabiner,
1989) or some other new training algorithm.

2.1 The decoding problem
In some applications, for a given HMM, the most probable state sequence Q∗ = {q∗1 q∗2 ... q∗T}
which generates a given observation sequence O = {O1 O2 ... OT} could be desired. To
estimate the optimum state sequence, the stochastic dynamic programming based Viterbi
algorithm may be used. The Viterbi algorithm finds the state sequence Q∗ such that

Q∗ = argmax
Q

P(Q|O,λ) = argmax
Q

P(O, Q|λ)

We define the probability function δt(i) at the ith state, time t of the multi-stage by

δt(i) = max
q1 q2 ...qt

ln p(q1 q2 ..., qt = i,O1O2...Ot|λ, qt),

t ≥ 1, i.e. the maximum partial observation probability associated with state sequence of
HMM at time t. In order to allow for path tracking,Ψt(i) is also introduced to keep track of the
most probable state sequence visited by an observation Ot.

2.2 The training problem
The HMMs owe their success to the existence of many efficient and reliable generative
training algorithms. The generative training has the advantage that one may impose all
kinds of structure constraints, such as graphical models (Jordan, 2004). These constraints
are related to inherent dependency or various relationship of data. More recently, a hybrid
generative/discriminative training schemes were proposed for training. In a more general sense,
the discriminative training of generative models may include any alternative estimation methods
for traditional generative models based on a different training criterion rather than the maximum
likelihood estimation (MLE). The discriminative training directly optimises a mapping function
from the input data samples to the desired output labels by adjusting a decision boundary
in the feature space. Several mapping functions can be estimated using some criteria that
are directly relevant to the ultimate classification and regression purpose. The more used
mapping functions in the literature are the conditional maximum likelihood (CML) (Jebara &
Pentland, 1998), also known as maximum mutual information (MMI) estimation (Bahl et al.,
1986; Woodland & Povey, 2002), empirical risk minimization (ERM) (Meir, 1995) and large
margin estimation (LME) (Scholkopf & Smola, 2002; Smola et al., 2000).

2.2.1 Conventional Baum-Welch training
In many conventional generative training methods, a new set of parameters λ̃ is chosen such
that P(O|λ̃) is maximized for a given observation sequence O = {O1 O2 ... OT}. In these
methods, a new set of parameters λ̃ is chosen such that P(O|λ̃) is maximized for a given
observation sequence Ot+1 Ot+2 ... OT . The re-estimation formulas of a given HMM (Rabiner,
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1989) may be derived directly by maximizing (using standard constrained optimization
techniques) the Baum’s auxiliary function (Baum et al., 1970),

Qaux(λ, λ̃) = ∑
Q

P(O, Q|λ) logP(O, Q|λ̃),

over λ̃. It has been proven by Bawm-Welch & Eagon (Baum & Eagon, 1967) that maximization
of Qaux(λ, λ̃) leads to increased likelihood, i.e.

max
λ̃

[Qaux(λ, λ̃)]⇒ P(O|λ̃) ≥ P(O|λ).

Eventually the likelihood function converges to a critical point.
In the literature, the solution space of HMMs is usually coded as a function of the
model parameters (Π,A,B). The MLE or the probability of the observation sequence
associated to the HMM parameters may be applied. This may be obtained using the
Expectation-Maximization algorithm (EM) (Dunmur & Titterington, 1998). This algorithm leads
to Baum-Welch reestimation formulas which are based on the calculation of the forward and
backward probabilities (Rabiner, 1989). The EM algorithm is slow, computationally expensive
in practice and its estimation performance in the case of CHMMs depends on the given initial
model.
The Baum-Welsh algorithm has become very popular due to its simplicity and efficiency.
However, this algorithm may be easily trapped in a local optimum.

2.2.2 Conventional K-mean (Viterbi-based) training
Viterbi training (or segmental K-means) method is proposed as a generative training approach
to speed up the learning process. The basic idea behind Viterbi training is to replace
the computationally costly expectation E-step of the EM algorithm by an appropriate
maximization step with fewer and simpler computations. Thus the MLE criterion can be
approximated bymaximizing the probability of the best HMM state sequence for each training
sample, given the model. The most probable path for each training sequence is derived using
Viterbi decoding algorithm. Based on this path, the state transition and observation emissions
occurrences are estimated and used for the reestimation of the HMM parameters:

• Initialization: Choose model parameters randomly.

• Iteration:
– Derive the most probable state sequence Q using the Viterbi decoding algorithm.
– Calculate aij and bi(Ot) for the given Q.
– Estimate the new model parameters using the estimated occurrences of state transition

and observation emissions.

• Termination: Stop, if convergence of the model parameters.

As mentioned by Rodríguez & Torres (Rodríguez & Torres, 2003) and by
Koloydenko (Koloydenko, 2007), Viterbi training involves much less computational
effort than Baum-Welch, still providing the same or slightly worse performance, so it is a
common choice among designers of speech recognition systems.

30 Hidden Markov Models, Theory and Applications



2.2.3 New generative and discriminative training algorithms

There is no theoretical method to overcome the model initialisation and the local optimum
problems. In practice, many generative training as well as discriminative training methods were
proposed to overcome the limitations of the above conventional algorithms.

2.2.3.1 New generative training algorithms for the generative models

Some authors (Kanevsky, 2004; Povey & Kingsbury, 2007; Woodland & Povey, 2002)
suggested an Extended Baum-Welch (EBW) algorithm which is an iterative algorithm that uses
a specific set of update rules performed at each iteration. Huda et al. (Huda et al., 2006)
proposed different initial guesses and the solution that corresponds to the local maximum
with the largest probability is selected. The authors (Aupetit et al., 2007; Fengqin et al.,
2008; Xue et al., 2006) used the Particle Swarm Optimization (PSO) algorithm (Kennedy et al.,
2001). Wang et al. (Wang et al., 2008) proposed anHMM based on a mixture of factor analysis
(HMM-MFA) to model the correlation between the feature vector elements in speech signals.
Turner (Turner, 2008) proposed an effective implementation of a direct approach using an
adaptation of the Levenberg-Marquardt algorithm. This approach is based on the possibility of
maximizing the likelihood of HMMs by means of a direct gradient-Hessian approach, without
resorting to the EM algorithm.
Meta-heuristics approaches such as simulated annealing or Tabu search algorithms (Aarts & Korst,
1990; Kinney et al., 2007; Kirkpartrick et al., 1983; Lee, 2008; Lyu et al., 1996; Mazumdar et al.,
2007; McKendall & Shang, 2008) were used to minimize general energy or cost functions with
the aim of finding global optimal solutions within the feasible parameter domain. Due to the
non convexity of the maximum likelihood criterion, some meta-heuristics such as evolutionary
programming and simulated annealing algorithms in their original implementation in the
context ofHMMs have been proposed (Andrieu et al., 2000; Eddy, 1995; Lee& Park, 2007; Paul,
1985; Pérez et al., 2007; Rao & Rose, 2001; Tang et al., 2006; Yang et al., 2008; Won et al., 2007;
Zhao et al., 2007). In these works, the simulated annealing algorithm is applied to the CHMM
parameters. It is well known in simulated annealing that the convergence and the size of the
chain used at each temperature depend on the size of the solution space. A continuous coding
of the solution space leads to an infinite size of this space which gives rise to convergence
difficulties whereas the discrete coding of the solution space leads to a finite size of this space
which gives rise to better convergence properties (Al-ani & Hamam, 2010b).

2.2.3.2 New discriminative training algorithms for the generative models

Based on the mapping functions, many discriminative models were developed (Jiang, 2010).
Particularly, based on the generalization bounds in statistical learning theory (Vapnik, 1998), large
margin estimation (LME) (Scholkopf & Smola, 2002; Smola et al., 2000) have been applied
with success in several fields. However, as stated by Jiang (Jiang, 2010), there are still
some limitations in the discriminative training scheme. For example, it is not straightforward
to deal with latent variables and exploit the underlying structure of data in discriminative
models. Moreover, computational complexity is considerably higher in discriminative training
since it requires simultaneous consideration of data from all classes. Hence, no standalone
discriminative model can yield comparable performance as generative models, i.e., HMMs, on
any significant application task.
More recently, several hybrid algorithms have emerged combining generative models and
discriminative training based on some discriminative criteria that are related to the application
purposes (Altun et al., 2003; Jaakkola&Haussler, 1998; Jaakkola et al., 1999; Taskar et al., 2003).
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This scheme makes possible to deal with latent variables and exploit the underlying structure
of data. Discriminative training of HMMs have been applied in many fields:

• Speech and handwritten recognition (Altun et al., 2003; Arslan & Hansen, 1999; Bach &
Jordan, 2005; Cheng et al., 2009; 2010; Do & Artières, 2009; Dong & Li, 2007; Ganapathiraju
et al., 2000; Golowich & Sun, 2007; Gu et al., 2000; Jiang et al., 2006; Jiang & Li, 2006; Jiang,
2010; Krüger et al., 2005; 2006; Lee & Park, 2005; Li & Jiang, 2005; Li et al., 2005a;b; Li &
Juang, 2006; Liu et al., 2007a;b; Markov et al., 2001; Sanguansat et al., 2004; Saon & Povey,
2008; Sha & Saul, 2009; Solin & Burshtein, 2008),

• Computational biology (Li & Noble, 2003),

• Dialog act tagging (Surendran & Levow, 2006),

• Analysis of Facial expression temporal dynamics (Valstar & Pantic, 2008)

• Financial applications (Rao & Hong, 2001),

• Information extraction (Altun et al., 2003),

• Modeling chaotic nonlinear dynamical systems (Myers et al., 1992),

• Teleoperation tasks (Castellani et al., 2004),

• Temporal signals and EEG analysis (Xu et al., 2005; 2006),

2.3 Selection of the number of states in HMMs
A practical implementation but fundamental issue to be addressed when using HMMs is the
determination of their structure, namely the topology (or the transitions between the states) and
the number of states. The structure of an HMM is determined by some constraints that may
be introduced in the HMM structure, such as forcing the presence or absence of connections
between certain states.
Several approaches were proposed for learning the structure of HMMs. Stolcke &
Omohundro (Stolcke & Omohundro, 1993) proposed a data-driven technique where the
induction process starts with the most specific model consistent with the training data
and generalises by successively merging states. Both the choice of states to merge and the
stopping criterion are guided by the Bayesian posterior probability. Takara et al. (Takara
et al., 2007) proposed the application of a genetic algorithm (GA) to search out an optimal
structure. Biem et al. (Biem et al., 2002; Biem, 2003) proposed a model selection criterion for
classification problems. The criterion focuses on selectingmodels that are discriminant instead
of models based on the Occam’s razor principle of parsimony between accurate modeling and
complexity. The criterion, dubbed Discriminative Information Criterion (DIC), was applied to
the optimisation of HMM topology aimed at the recognition of cursively-handwritten digits.
The results showed that DIC generated models achieve a good relative improvement in
performance from a baseline system generated by the Bayesian Information Criterion (BIC).
Bcego et al. (Bcego et al., 2003) proposed a technique which is able to deal with drawbacks
of standard general purposemethods, like those based on the Bayesian inference criterion (BIC),
i.e., computational requirements, and sensitivity to initialisation of the training procedures.
The basic idea is to perform “decreasing” learning, starting each training how to learn model
structure from data and how to make the best use of labeled and unlabeled data. They
showed that a manually-constructed model that contains multiple states per extraction field
outperforms a model with one state per field, and discussed strategies for learning the model
structure automatically from data. They also demonstrated that the use of distantly-labeled
data to set model parameters provides a significant improvement in extraction accuracy.
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Siddiqi et al. (Siddiqi et al., 2007) proposed a new state-splitting algorithm that addresses
two problems: choosing the structure (model selection) and estimating model parameters
(learning).
Other approaches were also proposed for estimating the number of states. Celeux &
Durand (Celeux & Durand, 2008) proposed a technique for selecting HMM state number
with cross-validated Likelihood and they gave two approaches to compute cross-validated
likelihood for a HMM. The first one consists of using a deterministic half-sampling procedure,
and the second one consists of an adaptation of the EM algorithm for HMMs, to take into
account randomly missing values induced by cross-validation. Gunter & Bunke (Gunter &
Bunke, 2003) examined some optimization strategies for an HMM classifier that works with
continuous feature values and uses the Baum-Welch training algorithm. The free parameters
of the optimization procedure introduced in their paper are the number of states of a model,
the number of training iterations, and the number of Gaussian mixtures for each state.
The proposed optimization strategies are evaluated in the context of a handwritten word
recognition task.

3. Some selected applications of Hidden Markov models in dynamic systems

In this section, we introduce two application examples on dynamic processes. The first
application concerns the condition-based maintenance of machines using HMMs and the second
one concerns the diagnosis in medicine. For more details, see (Al-ani et al., 2004; Bunks et al.,
2000)

3.1 Condition-based maintenance of machines using HMMs
The term condition-based maintenance (CBM) is used to signify the monitoring of machines for
the purpose of diagnostics and prognostics. Diagnostics are used to determine the current health
status of a machine’s internal components and prognostics are used to predict their remaining
useful life. CBM has the potential to greatly reduce costs by helping to avoid catastrophic
failures (an extremely important point, for example, for helicopter gearboxes) and by more
efficiently determining the intervals required for maintenance schedules. The economic
ramifications of CBM are many fold since they affect labour requirements, replacement part
costs, and the logistics of scheduling routine maintenance. The reduction of maintenance to
that which is strictly necessary can have the effect of prolonging machine life and that of
diminishing the defects that can be introduced by the maintenance itself. Finally, the reduction
of catastrophic failures which lead to the loss of life and equipment can have an important
e!ect on insurance premiums.
One method for performing CBM is by using vibration measurements. The main objective
is the detection of vibrational characteristics which correspond to physical changes in the
machine which indicate abnormal operation. Examples of this could be chipping in a roller
bearing or spalling on a pinion gear. The primary challenge is to achieve a high degree of
precision in classifying a machine’s health given that its vibrational characteristics will vary
with many factors not all corresponding to defective components. For example, two identical,
newmachines will generally have different vibrational characteristics due to differences in the
manufacturing process. Furthermore, a machine’s underlying vibrational character is likely
to change over time as a function of the operating conditions, the maintenance schedules
it has undergone, and aging of the machine. Finally, the specific vibrational characteristics
of the machine will change as torque loads vary. Clearly, it is important to be able to
differentiate between vibrational changes which are due to machine component defects and
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those due to changing operating conditions. Assuming that torque loads vary slowly with
time, recorded vibration data should demonstrate practically stationary statistics over short
intervals. Under these conditions the following approach suggests itself. First, all the different
operating conditions which give rise to significantly different statistics in vibration data must
be identified. Second, the statistics of vibration data for various defects must be determined
either experimentally or by modelling. The combined sets of statistics would then serve as
a universe of models with which hypothesis testing could be performed on segments of the
data. Continuous processing of sequential segments of the data would result in classification
of operating condition and defect type (if any) as a function of time. Prior knowledge of how
a machine were to be operated or information about the relative frequency of the occurrence
of different types of defects could also be used to improve the performance of the above
classification algorithm. This would be accomplished by constructing a doubly stochastic
process which describes probabilistically how the machine is likely to undergo transition from
state to state and what the statistics are at each state. This type of process is well suited to the
statistical modelling methodology defined by HMMs.
HMMs are well suited to modelling of quasi-stationary signals and thus, as will be discussed
in what follows, can be used to perform detection and estimation for machine diagnostics and
prognostics. Two features of HMMs are particularly useful in themonitoring ofmachine health.
The first is that computationally efficient methods exist for computing likelihoods using
HMMs (Van Trees, 1968). This feature is important since it promises that signal processing
tools based on HMMs can be implemented cost effectively. Furthermore, there exist efficient
techniques which can be used for system identification with HMMs. This means that HMMs
can be used to build data-driven models of machines relieving somewhat the need to identify
specific features in data to be used as health indicators.
Bunks et al. (Bunks et al., 2000) compared problems of speech processing, an area where
HMMs have been applied extensively, to those of machine health monitoring. Their
comparison was useful since it helpedmotivate the use of HMMs for CBM as well as indicated
what some of the critical issues. Then, they used the Westland helicopter gearbox data to
illustrate some of the characteristics of vibration data under different operating conditions
and types of defects and to illustrate the application of HMMs to CBM.

3.1.1 The Westland helicopter gearbox data
The laboratory data set is made available by the Office of Naval Research for the evaluation of
machine health monitoring algorithms. This data set consists of vibration measurements from
a set of accelerometers placed on the casing of a Westland helicopter gearbox (Bunks et al.,
2000). The gearbox was operated at various torque levels and with various seeded defects in
a special test rig. This data set is used in examples of the application of HMMs to CBM.
The data set consists of 68 distinct operating conditions constituting nine different torque
levels and eight different seeded defects (of which one is actually a no-defect case). For each
operating condition time samples at a sampling rate of 100 kHz from eight accelerometers are
available for analysis. Bunks et al. (Bunks et al., 2000) noted the following observations on the
salient features of the Westland helicopter gearbox data set:

• The data are not stationary as a function of operating torque level.

• There are clear, although complex, differences in the spectra as a function of the types of
defects.

• There are clear, although complex, differences in the spectra as a function of the severity of
defect level.
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These observations were important since they validated the comparisons made by Bunks et
al. (Bunks et al., 2000), imply the feasibility of prognostics, and motivate the construction of
HMMs models for CBM.

3.1.2 HMM modelling for the Westland helicopter gearbox data
The objective is to construct someHMMmodels which can be used on data from theWestland
helicopter gearbox.HMMs are composed of twomain components. There is the state transition
matrix which probabilistically describes how the model moves from one stationary type of
behaviour to another. There is also the probability distribution associated to each state which
describes the statistics of the particular stationary model. In order to effectively model the
Westland helicopter gearbox data presented briefly in the previous section it is necessary
to construct a reasonable model for both of these components. This is achieved by first
specifying the total number of states for the model and then by estimating the parameters
of an appropriate probability density for each state. As for the state transition matrix this
information can only be obtained by using a prior experimental knowledge of the frequency
of occurrence of each defect and the average time spent operating at each of the torque levels.
For the purposes of their work this information was not available; nevertheless, some effort
was made Bunks et al. (Bunks et al., 2000) to construct a reasonable state transition model.

3.1.2.1 Modelling state probability densities

As noted in Section 3.1.1 the characteristics of the power spectra of the Westland data change
significantly for different torque levels and for different defect types. For the Westland data
set there are a total of 68 different torque-level defect-type pairs available. Thus, the HMM
constructed contains the same number of states.
An essential part of applying HMM technology to any problem is to decide what the
appropriate observations are. In general, the observations could be the raw data or some
function or transformation of the data. A transformation of the data is preferable when the
result allows for the diminution of the quantity of data which needs to be processed without
losing the ability to effectively monitor the HMM process. This may be important for the
Westland data since it is acquired at a rate of 100k samples per second for each of the eight
sensors and thus represents a relatively heavy data volume.
Each state of the Markov chain associated to an HMM must have a state process model
which implicitly or explicitly specifies a probability density function. In the HMM literature
the Gaussian distribution is often used although multi-modal distributions are also used by
taking mixtures of Gaussians (Liporace, 1982; Rabiner, 1989). Other common choices include
mixtures of autoregressive and autoregressive moving-average models (Poritz, 1982). In this
application a simple multi-dimensional Gaussian distribution was used. A different Gaussian
is estimated for each of the 68 operating conditions. Each Gaussian is eight-dimensional (8D)
(due to the eight sensors) and is estimated using the first 10k samples of each of the operating
condition runs (i.e. the first 0.1 s of data). The mean vectors, μi, and covariance matrices, Σi
for each of the i = 1, 2, .., 68 cases were obtained using the following formulas:

μi =
1
T

T

∑
t=1

yi(t) (1)

Σi =
1
T

T

∑
t=1

[yi(t)− μi][yi(t)− μi]
T (2)
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where T=10000 and yi(t) is the 8-vector of observations at time tΔt for data from operating
condition i.
We note that, in principle, the vibration data should be zero mean since having a DC level of
vibration is meaningless. Nevertheless, it is important to take the sample mean into account to
cancel the effects of bias coming from electronic amplification. We further note that modelling
the time sample data as an independent and identically distributed 8D Gaussian process does
not take advantage of the spectrally banded features of the data that were pointed out in
Section 3.1.1. The choice does have, however, a physical interpretation. Since the mean does
not contain any information the difference in data can only be contained in the second-order
statistics, namely the covariance. Looking at the broadband covariance matrix associated to
an operating condition yields information about the rms vibrational power on each sensor
(the diagonal terms of the covariance matrix) as well as the rms cross-power between sensors.
Since the various sensors are distributed equally around the gearbox it can be concluded that
this model provides information on proximity (i.e. relative power) and multipath effects (i.e.
events that lead to high correlation between sensors). As shown by Bunks et al. (Bunks et
al., 2000), this model results in an extremely robust classification of the Westland helicopter
gearbox data.
To measure the ability of the 68 Gaussian models to discriminate the data they were used
in three classification experiments. The experiments were conducted by testing which of the
68 models maximized the likelihood of observed data. This was done with varying sample
lengths for the observed data (10k, 1k, and 200 samples). The three tests were performed using
the fourth second of data. Note that since the models were created using the first 0.1 s of data
that these tests are performed by applying the models to data removed by 3.9 s. The results of
the above three experiments are illustrated in Fig. 1.

(a) (b) (c)

Fig. 1. Classification test using fourth second’s first (a) 10k samples. (b) 1k samples. (c) 200
samples (Bunks et al., 2000).

Each sub-figure illustrates the classification index (1-68) vs the data set index (also 1-68). Thus,
each circle in Fig. 1 (a) yields the result of deciding which is the best model (classification)
given the data set specified on the independent axis. Perfect classification requires that all the
circles lie on the diagonal as they almost do in Fig. 1 (a). The classification indices were chosen
to group operating conditions together by defect type. The ensemble of rectangular boxes in
Fig. 1 (a) indicates groups of indices whose defect type and level are the same. As shown in
the figure each rectangle is labelled by the defect type and level it represents. Finally, inside
each rectangle the torque level is increasing from the lower left to the upper right of the box.
As can be seen in Fig. 1 (a) the classification of the 68 cases only has minor errors consisting
of two torque-level misclassifications. In particular, for the level 2 defect d8 the torque at
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50% is misclassiëd to be 45% and that of 60% is taken to be 50%. Thus, it can be concluded
that using eight-dimensional Gaussian distributions to model the data is sufficient to identify
defect types and almost sufficient to identify all torque levels. This remains true when the
observed data set is reduced to only 1000 samples as is seen in Fig. 1 (b). However, as shown
in Fig. 1 (c), when the number of samples is reduced to only 200 the classification of the 68
cases starts to show a more significant number of errors. Nevertheless, these errors continue
to consist of only torque-level classification errors and none are defect-type errors.
The next test shows how the above classification procedure might work on a data set from
an operating helicopter gearbox. The tests are made using a composite data set which was
created by splicing together data from 10 of the 68 different operating conditions. An example
of this data set for the port quill shaft sensor is illustrated in Fig. 2.

Fig. 2. Illustration of sequenced data from port quill shaft sensor.

The figure shows the 10 segments delineated by vertical lines. Also shown on each of the
segments is a four-digit code of the form XYZZ for which X gives the defect level (1 or 2),
Y gives the defect type (1-9), and ZZ gives the torque level (the torque level designated by
99 actually indicates a torque of 100%.). The sequence of segments is also summarized in the
lower-left corner of the plot. The left-most segment of the data set is thus the no-defect case at
100% torque. This is followed by a diminishing of the torque to 75, 50, and then 27% at which
point defect #4 (spiral bevel input opinion spalling) is introduced also at a torque level of 27%.
The torque level is then increased to 70 and then 100% with this defect. The situation then
becomes more serious evolving to a level-2 defect #4 at 100% torque. The torque level then
decreases to 50 and then 27% for this defect level.
It is interesting to note that in the sequence presented in Fig. 2 the amplitude of vibration is
higher for low torque levels than for high torque levels. This was already noted previously
in the examination of power spectra (see Fig. 1 and the associated comments). The sequenced
data set for all eight sensors (of which only one is illustrated in Fig. 2) were used to perform
three classification experiments. Each experiment was conducted by applying a sliding
window (with no overlap) of length 1k, 200, and 100 samples, respectively, over the data.
The models used in the prior examples were used to classify the data output from the sliding
window at each step. The results are shown in Fig. 3.
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(a) (b) (c)

Fig. 3. Comparison of classification and true sequence with (a) a sliding window 1000
samples wide. (b) a sliding window 200 samples wide. (c) a sliding window 100 samples
wide (Bunks et al., 2000).

In Fig. 3 (a) there are very few errors of classification for the case where a sliding window of
1k samples is used. Since model index is organized by torque as was illustrated in Fig. 1 it
can be seen that the several small errors are torque-level classification errors only. For the case
of the sliding window using 200 samples shown in Fig. 3 (b) there are more errors but they
remain small and are still only slight torque-level discrepancies. Finally, in Fig. 3 (c) which
illustrates the case of the sliding window with 100 sample points, there are several important
errors which give rise to misclassifications in the type of defect. These errors are indicated by
circles and are labelled by their type codes.
The tests presented in the preceding figures indicate that the 68 models are quite robust and
are quite capable of performing accurate classification of defects and even classification of
torque level. Furthermore, the examples show that the use of more samples is preferable since
it improves the accuracy of classification and proportionally diminishes the amount of data to
consider. It is important to note that the computational burden necessary to obtain the decision
statistics is quite light depending only on a number of multiplies proportional to the number
of samples as defined in Equation 2.

3.1.2.2 Modelling state transition probabilities

The construction of a state transition model improves classification performance over that
obtained from simply using a finite set of unrelated models. That is to say the additional
information obtained from knowing what are the relative state visitation frequencies provides
a smoothing mechanism to the estimation of state (i.e. classification). Detection and estimation
algorithms based on HMMs incorporate state transition information in a Bayesian way.
In the previous section, a description of how to model state probability densities for the
Westland helicopter gearbox data was described and the resulting models were shown to
be effective in discriminating between various types of seeded defects. The models were also
shown to be robust and sufficiently discriminating to determine the operating torque levels of
the gearbox. These results seem to be sufficiently good to forego the need for the construction
of a state transitionmodel. However, theWestland data set is a high-quality laboratory test set.
Under true helicopter-operating conditions the recorded data would certainly be a lot noisier
and would most likely contain features not apparent in the test data.
Another important point is that for general problems of machine health monitoring there will
not always be laboratory test data from which state probability densities can be estimated
as was done in the previous subsection. Under these circumstances it may be necessary
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to determine these densities from explicit modelling using only the knowledge of the
physical characteristics of the various machine components (for a description of how to do
this with gears see (Mark, 1992)). Consequently, additional statistical information obtained
from the state transition model is very important for the performance of any classification
computations.
This section discusses a state transition model for the gearbox data. This model should be
based on prior information about the frequency of occurrence of each defect and the average
time spent operating at each of the torque levels. Although, for the Westland helicopter
gearbox data set, this information is not available it is still useful to discuss a potential model.
The model describes how a simple state transition diagram might reasonably be constructed.
The model is illustrated in Fig. 4 which shows three rows of states the top one for no-defect,
the middle one for a level 1 defect, and the bottom one for a level 2 defect.

Fig. 4. Transition diagram for Westland helicopter gearbox.

Each row contains nine states representing the nine torque levels under which the Westland
helicopter gearbox was operated. The arrows between torque levels are associated with
probabilities for transitioning from one torque level to the next. As shown in the diagram
they indicate that the torque can only increase or decrease by increments. The torque level
can also stay the same. The arrows between defect levels are associated with probabilities for
transitioning from no defect to a level-1 defect and subsequently to a level-2 defect. Notice
that once a no-defect state is left there is no way to return. This is also true for the transition
from a level-1 defect to a level-2 defect.
The state diagram in Fig. 4 illustrates a model for transitions from a no-defect to a single-defect
case. Since the Westland data set consists of seven distinct defect types the full-state transition
diagram would be based on Fig. 4 where the bottom two rows would be repeated six more
times and each attached in parallel to the top row. The full-state diagram model would
then permit a transition from the no-defect case to any one of the seven defect cases. The
state transition model could then be made more complex by allowing multiple defects to
be simultaneously present. Under these circumstances, additional branches representing the
multiple defect cases would be added to the state transition diagram. The new branches would
be appropriately attached to the single defect states. For example, simultaneous defects A and
B could be accessed by transitioning from either the single defect A or the single defect B (not
necessarily with the same probability).

3.1.2.3 Prognostics

An important problem in CBM is planning essential maintenance. Maintenance must be
performed before the expiration of the remaining useful life of critical machine components.
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Nevertheless, performing machine maintenance before it is needed gives rise to unnecessary
costs and can lead to maintenance-caused defects (damage inflicted on the machine via the
maintenance procedure). Thus, the estimation of mean useful life, known as prognostics, is
an interesting and important problem. HMMs provide a natural framework within which
problems of prognostics can be formulated. To illustrate this, Fig. 5 shows an HMMwhich can
be used for estimating the mean remaining useful life. In the figure, each state represents the
degree of incipient failure of a particular machine defect. The random process of each state
is determined by a row of Fig. 4. That is, state 1 in Fig. 5 is associated to a random process
generated by the top row of Fig. 4 (i.e. for no-defects). State 2 in Fig. 4 gets its random process
from the middle row of Fig. 4 and so on. For each state n there is a probability of remaining in
that state, ann, and a probability of leaving it, an,n+1. Since defects always become worse and
never improve the chain only allows transitions in the direction of increasing defect.

Fig. 5. Hidden Markov model for prognostics.

Thus, if state N represents the state of zero remaining useful life then the mean time, t∗, to this
state given that the current state, n, is calculated as a function of the mean number of steps
required to go from state n to state N. From the definition of expectation this is accomplished
by calculating the probability, pk, of going from state n to state N in exactly k steps and then
forming the sum

t∗ =
∞

∑
k=1

kpk (3)

This shows, at least in principle, how the problem of prognostics can be formulated
if the appropriate transition probabilities can be determined. Transition probabilities are
determined from experiential knowledge. As an example, it is well known that timing belts on
cars fail at around 70 000 miles. This sort of information is known for many types of machine
components and can be incorporated into the HMM in Fig. 5 as transition probabilities. Used
in conjunction with observations of vibration data it helps to determine the current state in the
HMM and the transition probabilities can then be used to compute a mean remaining useful
life estimate. This also illustrates how HMMs can be used in a hierarchical way to build up
complex models from simpler ones.
This application example does not answer all questions of how to apply HMMs to CBM
and many issues remain to be resolved. In particular, it is important to explore the practical
question of how to train HMMs for CBM. Since it is impractical to test each machine for each
operating condition that might be encountered, Bunks et al. (Bunks et al., 2000) suggested a
dynamic modelling approach for synthetically generating vibration data.

3.2 Sleep apnea diagnosis using HMMs
In this example, an automatic diagnosis approach based on HMMs is proposed for the
diagnosis of sleep apnea syndrome (Al-ani et al., 2004; 2008).
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Sleep apnea Syndrome (SAS) (American Academy of Sleep Medicine Task Force, 1999), is a very
common sleep disorder. SAS is considered as clinically relevant when the breath stops during
more than 10 seconds and occurs more than five times per sleep hour. These non breathing
episodes may sometimes occur more than 300 times a night. Health studies affirm that more
than 30 of these non breathing episodes per night should be considered abnormal. There exist
two kinds of apneic events that may cause insufficient pulmonary ventilation during sleep apnea
and hypopnoea. Apnea is defined as the total absence of airflow, followed by the reduction
of oxygen levels in arterial blood. The term hypopnoea is used when the breath doesn’t stop
but decrease over 50% of its normal value , followed by the reduction of oxygen levels in
arterial blood. The SAS is present mainly in adults and in 11% of children especially in the
male population (Eliot et al., 2003). Different form of apnea/hypopnoea may be distinguished:
obstructive, and mixed. Obstructive sleep apnea (OSA) is the most common type of sleep apnea.
OSA occurs when the upper airway occludes (either partially or fully) but the effort to
continue breathing is persistent. The primary causes of upper airway obstruction are lack
of muscle tone during sleep, excess tissue in the upper airway, and anatomic abnormalities in
the upper airway and jaw.
The treatment of SAS depends on the diagnosis quality of the apnea/hypopnoea event by the
expert physician. Nowadays the sleep apneas are classified manually by the expert physician
thanks to the nocturnal polysomnographic monitoring that simultaneously records several
vital signals during the entire sleeping process (Nasal airflow (NAF), electrocardiogram (ECG),
electroencephalogram (EEG), electromyogram (EMG), esophageal pressure (Pes), gastric pressure
(Pgas), Oxygen Saturation (OS), ...). A sleep apnea diagnosis is a very time consuming, expensive
and tedious task consisting of expert visual evaluation all 10 minutes pieces of approximately
8 hour recording with a setting of many channels.
Al-ani et al. (Al-ani et al., 2004), demonstrated that sleep apnea classification may be done
automatically using three simultaneous records of NAF, Peso and Pgas issued from the current
techniques of investigating patients with suspected sleep disordered breathing. The inference
method of this approach translates parameter values into interpretations of physiological and
pathophysiological states. If the interpretation is extended to sequences of states in time,
a state-space trajectory may be obtained. The identification of state-space trajectories is a
useful concept in diagnosis because some disorders may only be distinguished from each
other by time sequences of pathophysiological states. The probabilistic concept of HMMs
captures the uncertainty inherent in state interpretation. A major interest of using HMMs is
their capabilities for predictive inference. This inference makes our diagnosis system useful
in the evaluation of treatment plans, in the optimization of treatment plans, in the predictive
alarming.
The proposed diagnosis system, Fig. 6, is organized in such a manner that to be interactive
with the expert. It is organized as three phases: training phase, state interpretation phase and
detection phase.

3.2.1 Training phase
In the training phase, a real polysomnographic clinical records (observations) were used.
These records were organised as a multiple observation sequences of observations vectors.
Each vector contains three vital signals: NAF, Peso and Pgas. In Patient monitoring, we may
represent the evolution of the processes, modelled by different HMMs (normal respiration,
snoring, hypopnea, apnea, ...), by some intrinsic hidden states corresponding to some events
of interest (e.g., two events normal inspiration and normal expiration in the case of normal
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Fig. 6. Diagnosis system.

respiration. Simulated annealing algorithm (Al-ani & Hamam, 2010b) was used to construct
these HMMs.

3.2.2 Segmentation of the training data sequence into different pathophysiological state
sequence - state interpretation phase

Given the training observation sequences and their corresponding HMMs, this phase allows
an expert to decode, off-line, their corresponding state labels using Viterbi decoding algorithm.
The expert may then interpret these decoded state labels by some pathophysiological state
interpretations (e.g. snoring, inspiration, expiration, obstructive apnea, etc.), Fig. 7. The
interpretation of each state will be useful in on-line detection and interpretation of the
on-line state sequence. The identification of state-space trajectories is useful concept in
diagnosis since some disorders can only be distinguished from each other by the sequences of
pathophysiological states that they follow in time.

Fig. 7. An example of data segmentation of the air flow into different states and their
interpretations. Event model contains three states: state 1: week airflow, state 2: snoring
during expiration and state 3: snoring during inspiration.
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3.2.3 Off-line or on-line detection phase
Once the HMMs are available, the detection of hidden pathophysiological states in a given
observation sequence becomes possible. This may be done by two consecutive steps. At step1,
select the model that gives the maximum likelihood and at step 2, detect the Pathophysiological
state using Viterbi algorithm. Two modes of detection are possible: off-line detection using the
complete length of the observation sequence or on-line detection using a sliding window on
the observation sequence stream.
In the above work, it was demonstrated that sleep apnea classification may be done
automatically using three simultaneous records of NAF, Peso and Pgas issued from the current
techniques of investigating patients with suspected sleep disordered breathing. Correctly
identifying obstructive hypopneas and episodes of upper airway resistance needs a sensitive
measure of airflow and inspiratory effort. The measurement of swings in pleural pressure
by esophageal manometry is the current gold standard techniques for detecting changes in
respiratory effort. However, the placement of an esophageal catheter is often uncomfortable
and unacceptable, it may modify the upper airway dynamics, and some believe that it
contributes to the sleep disturbance during the sleep study. Furthermore, this technique is
available in only a proportion of sleep laboratories and, if performed, adds significantly to the
cost of the sleep study. For all these reasons, a new preliminary approach on detecting and
classifying sleep apneas and other breathing disorders is realised using mainly the ECG (Al-ani
et al., 2008). In this work, the observation sequences were obtained by feature extraction
technique which is based on Heart Rate Variability (HRV) defined in term of RR intervals of
ECG signals.

4. Conclusions

We tried throughout this chapter to sensitize the reader

1. on two problems related to conventional HMMs: the training problem and the selection of
a convenient structure for the constructed HMM. We recommend the reader to explore
some of the new training schemes introduced in section 2.2.3 that may significantly
improve the modelling results. The hybrid generative/discriminative approach is more
sensitive to change detection in dynamic systems than the purely generative or the purely
discriminative methods.
Concerning the choice of the structure, when it have a clear domain interpretation, as
for example in fault monitoring, the structure may be naturally dictated by the domain.
When the structure is not so conveniently available, however, we can employ some of
the data-driven selection methods introduced in section 2.3 to discover an appropriate
structure.

2. to the use of HMMs as a powerful tool for dynamic system modelling, fault detection and
diagnosis applications.
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1. Introduction

1.1 Preliminaries
In this chapter we focus on what Rabiner in his popular tutorial (Rabiner, 1989) calls
“uncovering the hidden part of the model” or “Problem 2”, that is, hidden path inference.
We consider a hidden Markov model (X,Y) = {(Xt,Yt)}t∈Z, where Y = {Yt}t∈Z is an
unobservable, or hidden, homogeneous Markov chain with a finite state space S = {1, . . . ,K},
transition matrix P = (pi,j)i,j∈S and, whenever relevant, the initial probabilities πs = P(Y1 =
s), s ∈ S. A reader interested in extensions to the continuous case is referred to (Cappé et al.,
2005; Chigansky & Ritov, 2010). The Markov chain will be further assumed to be of the first
order, bearing in mind that a higher order chain can always be converted to a first order one
by expanding the state space. To simplify the mathematics, we assume that the Markov chain
Y is stationary and ergodic. This assumption is needed for the asymptotic results in Section
3, but not for the finite time-horizon in Section 2. In fact, Section 2 does not even require the
assumption of homogeneity. The second component X = {Xt}t∈Z is an observable process
with Xt taking values in X that is typically a subspace of the Euclidean space, i.e. X ⊂ Rd.
The process X can be thought of as a noisy version of Y. In order for (X,Y) to be a hidden
Markov model, the following properties need to be satisfied:
1) given {Yt}, the random variables {Xt} are conditionally independent,
2) the distribution of Xt depends on {Yt} only through Yt.
The process X is sometimes called a hidden Markov process. It is well known that the ergodicity
of Y implies that of X (see, e.g. (Ephraim & Merhav, 2002; Genon-Catalot et al., 2000; Leroux,
1992)). The conditional distributions Ps = P(X1 ∈ ·|Y1 = s) are called emission distributions.
Without loss of generality, we will assume that the emission distributions Ps all have densities
fs with respect to a common reference measure μ.
We often restrict the general process defined above to time interval I, where I is either
{1, . . . , n} for some n ≥ 1 (Section 2), or I = N (Section 3). Thus {(Xt,Yt)}t≥1 is a restriction
of the doubly-infinite HMM to the positive integers and clearly, this process is ergodic as well.
Since our study is mainly motivated by statistical and machine learning, our notation reverses
the notation used in the mainstream HMM literature, e.g. (Cappé et al., 2005), where the
hidden Markov chain is denoted by X and the observed process by Y.
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2 Will-be-set-by-IN-TECH

Given a set A, integers m and n, m < n, and a sequence a1, a2, . . . ∈ A∞, we write an
m for the

subsequence (am, . . . , an); when m = 1, it will usually be suppressed, e.g. an
1 ∈ An will be

written as an. With a slight abuse of notation, we will denote the conditional probability
P(Yl

k = yl
k|Xn = xn) by p(yl

k|xn). We will often use the so-called smoothing probabilities
pt(s|xn) := P(Yt = s|Xn = xn), where s ∈ S and 1 ≤ t ≤ n. We will denote the probability of
xn by p(xn) and, for any sn ∈ Sn, we will write p(sn) = P(Yn = sn) for the probability of Yn

having the outcome sn; the distinction should be clear from the context.

1.2 The segmentation problem in the framework of statistical learning
By segmentation we refer to estimation of the unobserved realization yn = (y1, . . . , yn)
of the underlying Markov chain Y, given the observations xn = (x1, . . . , xn) of Xn. In
communications literature segmentation is also known as decoding (Bahl et al., 1974; Viterbi,
1967) or state sequence detection (Hayes et al., 1982). Segmentation is often the primary interest
of the HMM-based inference, but it can also be an intermediate step of a larger problem such
as estimation of the model parameters (Lember & Koloydenko, 2008; Rabiner, 1989), which
will be discussed in Subsection 4.2. Despite its importance in the HMM-based methodology,
a systematic study of different segmentation methods and their properties has been overdue
(Lember & Koloydenko, 2010b). Here we present a unified approach to the segmentation
problem based on statistical learning, and describe the commonly used as well as recently
proposed solutions.
Formally we seek a mapping g : X n → Sn called a classifier, that maps every sequence of
observations to a state sequence or path, which is sometimes also referred to as an alignment
(Lember & Koloydenko, 2008)1. In order to assess the overall quality of g, it is natural to
first measure the quality of each individual path sn ∈ Sn via a function known as risk. Thus,
for a given xn, let us denote the risk of sn by R(sn|xn). A natural approach to solving the
segmentation problem is then to compute a state sequence with the minimum risk. In the
framework of statistical decision and pattern recognition theory (Bishop, 2006) the risk is
usually specified via a more basic entity known as a loss function L : Sn × Sn → [0,∞], where
L(an, bn) is the loss incurred by estimating the actual state sequence an to be bn. Then for any
state sequence sn ∈ Sn the risk R(sn|xn) is the conditional expectation of the loss L(Yn, sn)
given that Xn = xn, i.e. R(sn|xn) := E[L(Yn, sn)|Xn = xn].
One popular loss function is the zero-one loss defined as

L∞(an, bn) =

{
1, if an �= bn;
0, if an = bn.

The minimizer of the risk R∞(sn|xn) based on L∞ is a sequence with maximum posterior
probability p(sn|xn), hence it is called the maximum a posteriori (MAP) path. The MAP-path is
also called the Viterbi path after the Viterbi algorithm (Forney, 1973; Rabiner, 1989; Viterbi, 1967)
used for its efficient computation.
Another popular approach is based on pointwise loss functions of the form

L1(an, bn) =
1
n

n

∑
t=1

l(at, bt), (1)

1 This usage of the term “alignment” is broader than that of the HMM-based “multiple sequence
alignment” in the bioinformatics context .
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where l(at, bt) ≥ 0 is the loss of classifying the tth symbol as bt when the truth is at.
Most commonly l(s, s′) = I{s �=s′}, where IA is the indicator function of a set A. Then the
corresponding risk function R1(sn|xn) is simply the expected misclassification rate given the
data xn. Hence, the minimizer of this risk is a sequence with the lowest expected number
of misclassifications. We refer to such sequences as pointwise maximum a posteriori (PMAP)
alignments (Lember & Koloydenko, 2010b). The name refers to the fact that given xn, the
PMAP-alignment maximizes ∑n

t=1 pt(st|xn) that obviously can be done pointwise. Note
that the PMAP-alignment equivalently maximizes the product ∏n

t=1 pt(st|xn), and therefore
minimizes the pointwise log risk

R̄1(sn|xn) := − 1
n

n

∑
t=1

log pt(st|xn). (2)

Since the purpose is to maximize the expected number of correctly classified states, this is also
known as the optimal accuracy alignment (Holmes & Durbin, 1998). In statistics, this type of
estimation is known as marginal posterior mode (Winkler, 2003) or maximum posterior marginals
(Rue, 1995) (MPM) estimation. In computational biology, this is also known as the posterior
decoding (PD) (Brejová et al., 2008). In the wider context of biological applications of discrete
high-dimensional probability models this has also been called “consensus estimation”,
and in the absence of constraints, “centroid estimation” (Carvalho & Lawrence, 2008).
In communications applications of HMMs, largely influenced by (Bahl et al., 1974), the
terms “optimal symbol-by-symbol detection” (Hayes et al., 1982), “symbol-by-symbol MAP
estimation” (Robertson et al., 1995), and “MAP state estimation” (Brushe et al., 1998) have
been used to refer to this method.
Note that the introduced risk-based formalism does not impose any special conditions on Y.
In particular, in this and in the next Section the chain Y need not be homogeneous and the
conditional distribution of Xt given Yt can, in principle, vary with t.

2. Hybrid classifiers

2.1 The problem
The Viterbi classifier has several drawbacks. First, the obtained alignment is not optimal and
it can actually be quite poor in terms of accuracy as measured by the number of correctly
classified states. Related to this is the reluctance of this decoder to switch states as can be seen
from the following simple example taken from (Koloydenko & Lember, 2010).
Example 1. A long sequence has been simulated from an HMM with the following
parameters:

P =

⎛
⎝0.99 0.01 0

0.3 0.3 0.4
0 0.02 0.98

⎞
⎠ , π =

⎛
⎝0.5882
0.0196
0.3922

⎞
⎠ , πt = πtP,

and the emission distributions

p1 = (0.3, 0.2, 0.2, 0.3), p2 = (0.1, 0.3, 0.3, 0.3), p3 = (1/6, 1/6, 1/6, 1/2).

The sequence is then decoded with several classifiers including the Viterbi and PMAP ones.
Figure 1 gives two fragments of the ground truth and decoded outputs; the complete output
can be found in (Koloydenko & Lember, 2010). The example illustrates the typical tendency of
the Viterbi classifier to get stuck in a state of sizable probability and therefore systematically
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Fig. 1. Decoding performance of different classifiers.

misclassify less frequent states. In its extreme form, this behavior would predict a constant
sequence of Heads even when the Heads side of the coin is only slightly heavier than the Tails
one. In HMMs, the inaccuracy problem can be alleviated by exploiting the PMAP-classifier.
However, as can be noted from the forbidden transitions between states 1 and 3 along
the PMAP-path in Figure 1, the PMAP-decoding allows alignments of low or even zero
probability. In computational biology, for example, such paths would violate biological
constraints and hence be inadmissible. We will return to this example when considering
alternative classifiers.
As it has been shown in (Käll et al., 2005), it is possible to explicitly constrain the
PMAP-classifier to avoid inadmissible paths. The constrained PMAP-alignment is the
solution of the following optimization problem

min
sn : p(sn |xn)>0

R1(sn|xn) ⇔ max
sn : p(sn |xn)>0

n

∑
t=1

pt(st|xn). (3)

In our example the solution of (3) is seen in Figure 1 under the name CnstrPMAP. The
solution is indeed admissible, i.e. the forbidden zero-probability transitions are not any more
present. Observe that in the presence of path constraints, minimizing the R1-risk is not any
more equivalent to minimizing the R̄1-risk, therefore (3) is not equivalent to the optimization
problem

min
sn : p(sn |xn)>0

R̄1(sn|xn) ⇔ max
sn : p(sn |xn)>0

n

∑
t=1

log pt(st|xn). (4)

The solution of (4) was recently used in (Fariselli et al., 2005) under the name posterior Viterbi
decoding (PVD). On their tasks of predicting membrane proteins, PVD has shown results
superior to the Viterbi and PMAP-classifiers. In our example, the solution of (4) is seen in
Figure 1 under the name PVD. Note that it differs from the constrained PMAP but it is still
admissible.
To summarize: since the overall error rate is not the only measure of accuracy and since
PMAP may fail 100% in detecting an infrequent state, such as state 2 in our example,
constraining the PMAP-classifier is not an ultimate answer. Also, in some applications such
as gene-finding, region-based measures of accuracy are no less important than the pointwise
ones, but direct minimization of the corresponding risks generally does not lead to efficient
decoding algorithms.

2.2 Further issues and alternative solutions
Another serious drawback of the Viterbi decoding is that “there might be many similar paths
through the model with probabilities that add up to a higher probability than the single
most probable path” (Käll et al., 2005). In fact, Viterbi paths need not be representative
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of the overall posterior probability distribution (Carvalho & Lawrence, 2008) and can be
significantly atypical (Lember & Koloydenko, 2010a). Indeed, imagine having to estimate the
transition probabilities from the Viterbi path in Figure 1. This second problem of the Viterbi
segmentation has been addressed by moving from single path inference towards envelops
(Holmes & Durbin, 1998) and centroids (Carvalho & Lawrence, 2008). The most common
approach here is to aggregate individual states into a smaller number of semantic labels
(e.g. codon, intron, intergenic). In effect, this would realize the notion of path similarity
by mapping many “similar” state paths to a single label path or annotation (Brejová et al.,
2008; Fariselli et al., 2005; Käll et al., 2005; Krogh, 1997). However, this leads to the problem
of multiple paths, which in practically important HMMs renders the dynamic programming
approach of the Viterbi algorithm NP-hard (Brejová et al., 2007; Brown & Truszkowski,
2010). Unlike the Viterbi classifier, PMAP handles annotations as easily as it does state
paths, including the enforcement of the positivity constraint (Käll et al., 2005). A number of
heuristic approaches are also known to alleviate these problems, but none appears to be fully
satisfactory (Brejová et al., 2008). Note that mapping optimal state paths to the corresponding
annotations need not lead to optimal annotations and can give poor results (Brejová et al.,
2007).
Although the Viterbi and PMAP-classifiers have been by far the most popular segmentation
methods in practice, their aforementioned drawbacks have invited debates on the trade-off
between the path accuracy and probability, and alternative approaches have demonstrated
significantly higher performance in, for example, predicting various biological features.
In Subsection 2.3 below, which is based on (Lember & Koloydenko, 2010b), we show how
several relevant risks can be combined within a very general penalized risk minimization
problem with a small number of penalty terms. Tuning one of the penalty parameters allows
us to “interpolate” between the PMAP- and Viterbi classifiers in a natural way, whereas the
other terms give further interesting extensions. The minimization problem can then be solved
by a dynamic programming algorithm similar to the Viterbi algorithm. We would like to
remark that the idea of interpolation between the Viterbi and PMAP-estimators was already
hinted at in the seminal tutorial (Rabiner, 1989) and then considered in (Brushe et al., 1998). In
spite of those, no general systematic study of hybridization of the Viterbi and PMAP-classifiers
has been published before.

2.3 Generalized risk-based hybrid classifiers
Although the constrained PMAP-classifier and PVD guarantee admissible paths, as can also
be noted from Figure 1, the (posterior) probability of such paths can still be very low. Hence,
it seems natural to consider instead of (3) the following penalized optimization problem:

max
sn

[ n

∑
t=1

pt(st|xn) + log p(sn)
]

⇔ min
sn

[
R1(sn|xn) + R̄∞(sn)

]
, (5)

where
R̄∞(sn) := − 1

n
log p(sn)

is the prior log risk which does not depend on the data. The logic behind (5) is clear: we aim
to look for the alignment that simultaneously minimizes the R1-risk and maximizes the path
probability. A more general problem can be written in the form

min
sn

[
R1(sn|xn) + Ch(sn)

]
, (6)

55Theory of Segmentation



6 Will-be-set-by-IN-TECH

where C ≥ 0 and h is some penalty function. Taking Ch(sn) = ∞× (1− sign (p(sn)) reduces
problem (6) to problem (3).
Similarly, instead of (4), the following problem can be considered:

max
sn

[ n

∑
t=1

log pt(st|xn) + log p(sn)
]

⇔ min
sn

[
R̄1(sn|xn) + R̄∞(sn)

]
.

Again, the problem above can be generalized as

min
sn

[
R̄1(sn|xn) + Ch(sn)

]
. (7)

Taking Ch(sn) = ∞× (1− sign (p(sn)), reduces problem (7) to problem (4).

2.3.1 A general family of classifiers
Motivated by the previous argument, we consider the following yet more general problem:

min
sn

[
C1R̄1(sn|xn) + C2R̄∞(sn|xn) + C3R̄1(sn) + C4R̄∞(sn)

]
, (8)

where C1, . . . ,C4 ≥ 0, C1 + · · ·+ C4 > 0, and

R̄1(sn|xn) = − 1
n

n

∑
t=1

log pt(st|xn), as defined in equation (2) above,

R̄∞(sn|xn) := R̄∞(sn; xn) +
1
n
log p(xn),

R̄∞(sn; xn) := − 1
n

[
logπs1 +

n−1

∑
t=1

log pstst+1 +
n

∑
t=1

log fst (xt)
]
= − 1

n

[
log p(sn) +

n

∑
t=1

log fst (xt)
]
,

R̄1(sn) := − 1
n

n

∑
t=1

logP(Yt = st),

R̄∞(sn) = − 1
n

[
logπs1 +

n−1

∑
t=1

log pstst+1

]
= − 1

n
log p(sn).

The newly introduced risk R̄1(sn) is the prior pointwise log risk. Evidently, the combination
C1 = C3 = C4 = 0 gives the Viterbi alignment, the combination C2 = C3 = C4 = 0 yields the
PMAP-alignment, whereas the combinations C1 = C2 = C3 = 0 and C1 = C2 = C4 = 0 give
the maximum prior probability decoding and marginal prior mode decoding, respectively. The
case C2 = C3 = 0 subsumes (7), and the case C1 = C3 = 0 is the problem

min
sn

[
R̄∞(sn|xn) + CR̄∞(sn)

]
. (9)

Thus, a solution to (9) is a generalization of the Viterbi decoding which allows for suppressed
(C > 0) contribution of the data. It is important to note that with C2 > 0 every solution of (8)
is admissible.
Similarly to the generalized risk minimization problem in (8), a relevant generalization of (6)
emerges as follows:

min
sn

[
C1R1(sn|xn) + C2R̄∞(sn|xn) + C3R1(sn) + C4R̄∞(sn)

]
, (10)
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where

R1(sn) :=
1
n

n

∑
t=1

P(Yt �= st)

is the error rate when the data are ignored.

2.3.2 Solving (8) and (10)
The problems (8) and (10) would only be of theoretical interest if there were not an effective
way to solve them. We now present a dynamical programming algorithm (similar to
the Viterbi algorithm) for solving these problems. The algorithm requires the smoothing
probabilities pt(j|xn) for t = 1, . . . , n and j ∈ S, which can be computed by the usual
forward-backward algorithm (Rabiner, 1989). For every t = 1, . . . , n and s ∈ S, let

gt(s) := C1 log pt(s|xn) + C2 log fs(xt) + C3 logP(Yt = s).

Note that the function gt depends on all the data xn. For every j ∈ S and for every t =
1, 2, . . . , n− 1, define the scores

δ1(j) := C1 log p1(j|xn) + (C2 + C3 + C4) logπj + C2 log f j(x1), (11)

δt+1(j) := max
i

(
δt(i) + (C2 + C4) log pij

)
+ gt+1(j). (12)

Using the scores δt(j), let for every t = 1, . . . , n,

it(j) :=
{
argmaxi∈S[δt(i) + (C2 + C4) log pij], when t = 1, . . . , n− 1,
argmaxi∈S δn(i), when t = n;

(13)

ŝt(j) :=
{

i1(j), when t = 1,(
ŝt−1(it−1(j)), j

)
, when t = 2, . . . , n.

It is now not hard to see (see Th. 3.1 in (Lember & Koloydenko, 2010b)) that recursions
(11)-(12) solve (8), meaning that any solution of (8) is in the form ŝn(in), provided the ties
in (13) are broken accordingly.
By a similar argument, problem (10) can be solved by the following recursions:

δ1(j) := C1p1(j|xn) + (C2 + C4) logπj + C2 log f j(x1) + C3πj,

δt+1(j) := max
i

(
δt(i) + (C2 + C4) log pij

)
+ gt+1(j),

where now
gt(s) = C1pt(s|xn) + C2 log fs(xt) + C3P(Yt = j).

2.4 k-block PMAP-alignment
As an idea for interpolating between the PMAP- and Viterbi classifiers, Rabiner mentions
in his seminal tutorial (Rabiner, 1989) the possibility of maximizing the expected number of
correctly estimated pairs or triples of (adjacent) states rather than the expected number of
correct single states. With k being the length of the block (k = 2, 3, . . .) this entails minimizing
the conditional risk

Rk(s
n|xn) := 1− 1

n− k + 1

n−k+1

∑
t=1

p(st+k−1
t |xn) (14)
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based on the following loss function:

Lk(y
n, sn) :=

1
n− k + 1

n−k+1

∑
t=1

I{st+k−1
t �=yt+k−1

t } .

Obviously, for k = 1 this gives the usual R1-minimizer – the PMAP-alignment – which is
known to allow inadmissible paths. It is natural to think that the minimizer of Rk(sn|xn)
evolves towards the Viterbi alignment “monotonically” as k increases to n. Indeed, when
k = n, minimization of Rk(sn|xn) in (14) is equivalent to minimization of R̄∞(sn|xn), which is
achieved by the Viterbi alignment. In Figure 1 the minimizer of (14) for k = 2 appears under
the name PairMAP, and, as the example shows, it still has zero probability. This is a major
drawback of using the loss Lk.
We now show that this drawback can be overcome when the sum in (14) is replaced by the
product. This is not an equivalent problem, but with the product the k-block idea works well –
the longer the block, the bigger the probability and the solution is guaranteed to be admissible
even for k = 2. Moreover, this gives another interpretation to the risk R̄1(sn|xn)+CR̄∞(sn|xn).
Let k ∈ N. We define

Ūk(s
n|xn) :=

n−1

∏
j=1−k

p
(
s(j+k)∧n
(j+1)∨1

∣∣xn), R̄k(s
n|xn) := − 1

n
log Ūk(s

n|xn).

Thus Ūk(sn|xn) = Uk
1 ·Uk

2 ·Uk
3, where

Uk
1 := p(s1|xn) · · · p(sk−2

1 |xn)p(sk−1
1 |xn)

Uk
2 := p(sk

1|xn)p(sk+1
2 |xn) · · · p(sn−1

n−k |xn)p(sn
n−k+1|xn)

Uk
3 := p(sn

n−k+2|xn)p(sn
n−k+3|xn) · · · p(sn|xn).

Clearly, for k = 1, R̄k equals R̄1(sn|xn) defined in (2), so it is a natural generalization of R̄1.
The meaning of the risk R̄k will be transparent from the following equality proved in (Lember
& Koloydenko, 2010b): for every sn,

R̄k(s
n|xn) = (k− 1)R̄∞(sn|xn) + R̄1(sn|xn).

Thus, the minimizer of R̄k(sn|xn) is a solution of (8) with C1 = 1, C2 = k− 1, C3 = C4 = 0.
Note that the solution is admissible for every k > 1. It is easy to see that increasing the block
length k increases the posterior probability as well as the R̄1-risk of the solution. Hence, this
provides a natural interpolation between the Viterbi and the PMAP-alignments. In Figure 1
the minimizer of R̄2(sn|xn) for k = 2 is shown under the name HybridK2. The difference
between the HybridK2-alignment and the PairMAP-alignment (the minimizer of the R2-risk)
is clearly visible; in particular, the HybridK2-alignment is of positive probability. From the
figure it is also evident that the HybridK2-alignment possesses the properties of both the
Viterbi and PMAP-alignments.

3. Infinite segmentation

In the previous section, several alignments for segmenting the observations xn = (x1, . . . , xn)
were defined. The next question one can ask is the following: what are the long-run properties
of these different classifiers? This question is not easy to answer, since in general there is
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no obvious notion of infinite (asymptotic) alignment. Indeed, if (g1, . . . , gn) = g(x1, . . . , xn)
is an alignment, then adding one more observation xn+1 can in principle change the whole
alignment so that gt(xn) �= gt(xn+1) for every t, where gt(xn) stands for the tth element of
g(xn). On the other hand, it is intuitively expected that such a situation is rather atypical and
that a few, say k, first elements of g will be fixed almost surely as n goes to infinity. If this is the
case, then an infinite classifier can be defined as follows.
Def. For every n ∈ N, let gn : X n → Sn be a classifier. We say that the sequence {gn} of
classifiers can be extended to infinity, if there exists a function g : X∞ → S∞ such that for
almost every realization x∞ ∈ X∞ the following holds: for every k ∈ N there exists m ≥ k
(depending on x∞) such that for every n ≥ m the first k elements of gn(xn) are the same as the
first k elements of g(x∞), i.e. gn(xn)i = g(x∞)i, i = 1, . . . , k. The function g will be referred
to as an infinite classifier. If an infinite classifier exists, then applying it to the observations
x∞ gives us an infinite alignment g(x∞), and applying it to the process X∞ gives us a random
S-valued process g(X∞) that is called the alignment process. �
Hence, to study the asymptotic properties of various classifiers, the existence of an infinite
alignment is the first problem to be addressed. It is also desirable that various SLLN-type
results hold for the alignment process. This is guaranteed if the alignment process is
regenerative or ergodic. Despite the unified risk-based representation of the different
classifiers presented here, proving the existence of the infinite alignment for them requires
different mathematical tools.

3.1 Infinite Viterbi alignment and Viterbi process
Justified or not, the Viterbi classifier is the most popular one in practice. In (Lember &
Koloydenko, 2008; 2010a), under rather general assumptions on the HMM, a constructive
proof of the existence of the infinite Viterbi classifier was given. We shall now explain the
basic ideas behind the construction.

3.1.1 The idea of piecewise alignments
The proof is based on the existence of the so-called barriers. We believe that the following
oversimplified but insightful example will help the reader to understand this concept.
Suppose there is a state, say 1, and a set of observations A ⊂ X such that P1(A) > 0
while Pl(A) = 0 for l = 2, . . . ,K. Thus, at time u any observation xu ∈ A is almost surely
generated under Yu = 1, and we say that xu indicates its state. Consider n to be the terminal
time and note that any positive probability path, including the MAP/Viterbi ones, has to go
through state 1 at time u. This allows us to split the Viterbi alignment v(xn) into vu

1 and
vn

u+1, an alignment from time 1 through time u, and a conditional alignment from time u + 1
through time n, respectively. Moreover, it is clear that the first piece vu

1 maximizes p(su|xu
1 )

over all paths from time 1 through time u, vu = 1, and the second piece vn
u+1 maximizes

P(Yn
u+1 = sn−u|Xn

u+1 = xn
u+1,Yu = 1). Clearly, any additional observations xm

n+1 do not
change the fact that xu indicates its state. Hence, for any extension of xn the first part of the
alignment is always vu

1 . Thus, any observation that indicates its state also fixes the beginning
of the alignment for every n > u. Suppose now that xt, u < t < n, is another observation that
indicates its state, say, also 1. By the same argument, the piece vn

u+1 can be split into pieces
vt

u+1 and vn
t+1, where vt

u+1 maximizes P(Yt
u+1 = st−u|Xt

u+1 = xt
u+1,Yu = 1) and terminates

in 1, i.e. vt = 1. Again, increasing n does not change the fact that xt indicates its state, so that
vt

u is independent of all the observations before u and after t. Therefore, the Viterbi alignment
up to t can be constructed independently of the observations xn

t+1 by concatenating the pieces
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vu
1 and vt

u+1. Since our HMM is now a stationary process that has a positive probability to
generate state-indicating observations, there will be infinitely many such observations almost
surely. Since the Viterbi alignment between two such observations xu and xt can be be found
as the maximizer of p(·|xt

u), the infinite alignment can be constructed by concatenating the
corresponding pieces. We say that the alignment can be constructed piecewise.

3.1.2 Nodes
The example above is rather exceptional and we next define nodes to generalize the idea of
state-indicating observations. Recall that the Viterbi algorithm is a special case of the general
dynamic programming algorithm introduced in Subsection 2.3 with C2 = 1 and C1 = C3 =
C4 = 0. In particular, the basic recursion for obtaining the scores (11) and (12) for the Viterbi
algorithm is as follows: for every j ∈ S and t = 1, . . . , n− 1,

δ1(j) = logπj + log f j(x1),

δt+1(j) = max
i

(
δt(i) + log pij

)
+ log f j(xt+1).

The Viterbi alignment v(xn) is given by vn(in), where for every j ∈ S, the paths vt(j), t =
1, . . . , n, are obtained recursively:

vt(j) =
{

i1(j), when t = 1,(
vt−1(it−1(j)), j

)
, when t = 2, . . . , n;

with it(j) being (recall (13))

it(j) =
{
argmaxi∈S[δt(i) + log pij], when t = 1, . . . , n− 1,
argmaxi∈S δn(i), when t = n.

Def. Given the first u observations, the observation xu is said to be an l-node (of order zero) if

δu(l) + log plj ≥ δu(i) + log pij, ∀i, j ∈ S. (15)

We also say that xu is a node if it is an l-node for some l ∈ S. We say that xu is a strong node if
the inequalities in (15) are strict for every i, j ∈ S, i �= l. �
In other words, xu is an l-node if for appropriate tie-breaking iu(j) = l for every j ∈ S (see
also Figure 2). This obviously implies that (under the same tie-breaking) the first u elements
of the Viterbi alignment are fixed independently of the observations xn

u+1. If the node is
strong, then all the Viterbi alignments must coalesce at u. Thus, the concept of strong nodes
circumvents the inconveniences caused by non-uniqueness: nomatter how the ties are broken,
every alignment is forced into l at u, and any tie-breaking rule would suffice for the purpose
of obtaining the fixed alignments. However tempting, strong nodes unlike the general ones
are quite restrictive. Indeed, suppose that the observation xu indicates its state, say 1. Then
f1(xu) > 0 and fi(xu) = 0 for i �= 1. Hence δu(1) > −∞ and δu(i) = −∞ for every i ∈ S,
i �= 1. Thus (15) holds and xu is a 1-node. In other words, every observation that indicates
its state is a node. If in addition p1j > 0 for every j ∈ S, then for every i, j ∈ S, i �= 1, the
right-hand side of (15) is −∞, whereas the left-hand side is finite, making xu a strong node. If,
however, there is j such that p1j = 0, which can easily happen if K > 2, then for such j both
sides are −∞ and xu is not strong anymore.
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Fig. 2. An example of the Viterbi algorithm in action. The solid line corresponds to the final alignment
v(xn). The dashed links are of the form (t, it(j))− (t + 1, j) and are not part of the final alignment. E.g.,
(1, 3)− (2, 2) is because 3 = i1(2) and 2 = i2(3). The observation xu is a 2-node since we have 2 = iu(j)
for every j ∈ S.

3.1.3 Higher order nodes
We next extend the notion of nodes to account for the fact that a general ergodic P can have
a zero in every row, in which case nodes of order zero need not exist. Indeed, suppose xu is
such that δu(i) > −∞ for every i. In this case, (15) implies plj > 0 for every j ∈ S, i.e. the lth

row of P must be positive, and (15) is equivalent to

δu(l) ≥ max
i

[max
j

(log pij − log plj) + δu(i)].

First, we introduce p(r)ij (u), the maximum probability over the paths connecting states i and j
at times u and u + r + 1, respectively. For each u ≥ 1 and r ≥ 1, let

p(r)ij (u) := max
qr∈Sr

piq1 fq1 (xu+1)pq1q2 fq2 (xu+2)pq2q3 . . . pqr−1qr fqr (xu+r)pqr j.

Note that for r ≥ 1, p(r)ij (u) depends on the observations xu+r
u+1. By defining

i(r)t (j) := argmaxi∈S[δt(i) + log p(r)ij ],

we get that for every t = 1, . . . , n and j ∈ S it holds that the (t − r − 1)th element of vt(j)
equals i(r)t−r−1(j), i.e.

vt
t−r−1(j) = i(r)t−r−1(j). (16)

Def. Given the first u + r observations, the observation xu is said to be an l-node of order r if

δu(l) + log p(r)l j (u) ≥ δu(i) + log p(r)ij (u), ∀i, j ∈ S. (17)

The observation xu is said to be an rth order node if it is an rth-order l-node for some l ∈ S.
The node is said to be strong if the inequalities in (17) are strict for every i, j ∈ S, i �= l. �
Note that any rth-order node is also a node of order r′ for any integer r ≤ r′ < n, and thus by
the order of a node we will mean the minimal such r. Note also that for K = 2, a node of any
order is a node of order zero. Hence, positive order nodes emerge for K ≥ 3 only.
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Fig. 3. Suppose u < n, and xu is a 2nd order 2-node, and xu−1 is a 3rd order 3-node. Therefore,
any alignment v(xn) has v(xn)u = 2.

This definition implies that xu is an l-node of order r if and only if (under suitable tie breaking)

i(r)u (j) = l for every j ∈ S. By (16), this means that vu+r+1
u (j) = l for every j ∈ S, implying

that the first u elements of the Viterbi alignment are fixed independently of the observations
xn

u+r+1 (see Figure 3). This means that the role of higher order nodes is similar to the role
of nodes. Suppose now that the realization x∞ contains infinitely many rth order l-nodes
u1 < u2 < . . .. Then, as explained in Subsection 3.1.1, the infinite Viterbi alignment v(x∞) can
be constructed piecewise, i.e. the observations xu1+r fix the piece vu1 , then the observations
xu2+r

u1+1 fix the piece vu2
u1+1, and so on. In the absence of ties, the resulting piecewise infinite

alignment is unique. In the presence of ties we require that the ties be broken consistently,
and always so that the alignment goes through l at times ui. Then the resulting infinite Viterbi
alignment is called proper (see (Lember & Koloydenko, 2008) for details).

3.1.4 Barriers
Recall that nodes of order r at time u are defined relative to the entire realization xu+r. Thus,
whether xu is a node or not depends, in principle, on all observations up to xu+r. On the
other hand, the observation that indicates its state is a node independently of the observations
before or after it. This property is generalized by the concept of barrier. Informally speaking,
a barrier is a block of observations that is guaranteed to contain a (probably higher order)
node independently of the observations before and after this block. The formal definition is
as follows.
Def. Given l ∈ S, a block of observations zM ∈ XM is called a (strong) l-barrier of order r ≥ 0
and length M ≥ 1 if for any realization xn, M ≤ n ≤ ∞, such that xt

t−M+1 = zM for some t,
M ≤ t ≤ n, the observation xt−r is a (strong) l-node of order r. �
According to this definition, any observation that indicates its state is a barrier of length one.
Usually a set A ⊂ X can be found such that any observation from A indicates its state. More
typically, however, there is a set B ⊂ XM such that any sequence from B is a barrier. Hence
barriers can be detected by a sliding window of length M. More importantly, when such a
subset B is constructed, then by ergodicity of X almost every realization x∞ contains infinitely
many barriers provided that the set B has a positive probability to occur. As already explained,
having infinitely many barriers guarantees infinitely many (usually higher order) nodes, and
based on these nodes, the infinite Viterbi alignment can be constructed piecewise.
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Thus, everything boils down to the construction of the barrier set B. We are able to do
this under some mild assumptions on the HMM. Next we state and discuss briefly these
assumptions.
Recall that fs, s ∈ S, are the densities of Ps := P(X1 ∈ ·|Y1 = s) with respect to some reference
measure μ. For each s ∈ S, let Gs := {x ∈ X : fs(x) > 0}.
Def. We call a non-empty subset C ⊂ S a cluster if the following conditions are satisfied:

min
j∈C

Pj(∩s∈CGs) > 0 and either C = S or max
j �∈C

Pj(∩s∈CGs) = 0. �

Therefore, a cluster is a maximal subset of states such that GC = ∩s∈CGs, the intersection of
the supports of the corresponding emission distributions, is “detectable”. There always exists
at least one cluster; distinct clusters need not be disjoint, and a cluster can consist of a single
state. In this latter case such a state is not hidden, since it is exposed by any observation it
emits. If K = 2, then S is the only cluster possible, because otherwise the underlying Markov
chain would cease to be hidden. Our first assumption is the following.
A1 (cluster-assumption): There exists a cluster C ⊂ S such that the sub-stochastic matrix
R = (pij)i,j∈C is primitive, i.e. there is a positive integer r such that the rth power of R is
strictly positive.
The cluster assumption A1 is often met in practice. It is clearly satisfied if all elements of the
matrix P are positive. Since any irreducible aperiodic matrix is primitive, the assumption A1
is also satisfied in this case if the densities fs satisfy the following condition: for every x ∈ X ,
mins∈S fs(x) > 0, i.e. for all s ∈ S, Gs = X . Thus, A1 is more general than the strong mixing
condition (Assumption 4.2.21 in (Cappé et al., 2005)) and also weaker than Assumption 4.3.29
in (Cappé et al., 2005). Note that A1 implies aperiodicity of Y, but not vice versa.
Our second assumption is the following.
A2: For each state l ∈ S,

Pl

({
x ∈ X : fl(x)p∗l > max

s,s �=l
fs(x)p∗s

})
> 0, where p∗l = max

j
pjl , ∀l ∈ S. (18)

The assumption A2 is more technical in nature. In (Koloydenko & Lember, 2008) it was shown
that for a two-state HMM, (18) always holds for one state, and this is sufficient for the infinite
Viterbi alignment to exist. Hence, for the case K = 2, A2 can be relaxed. Other possibilities for
relaxing A2 are discussed in (Lember & Koloydenko, 2008; 2010a). To summarize: we believe
that the cluster assumption A1 is essential for HMMs, while the assumption A2, although
natural and satisfied for many models, can be relaxed. For more general discussion about
these assumptions, see (Koloydenko & Lember, 2008; Lember, 2011; Lember & Koloydenko,
2008; 2010a). The following Lemma is the core of our proof of the existence of the infinite
Viterbi alignment.

Lemma 3.1. Assume A1 and A2. Then for some integers M and r, M > r ≥ 0, there exist a set
B = B1 × · · · × BM ⊂ XM, an M-tuple of states yM ∈ SM and a state l ∈ S, such that every
zM ∈ B is an l-barrier of order r, yM−r = l and P

(
XM ∈ B, YM = yM)

> 0.

Lemma 3.1 is proved in (Lember & Koloydenko, 2010a), and implies that P(XM ∈ B) >
0. Hence almost every realization of X contains infinitely many barriers, which makes the
piecewise construction possible.
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3.1.5 Viterbi process and its regenerativity.
If A1 and A2 hold, then by Lemma 3.1 and the piecewise construction there exists an infinite
Viterbi classifier v : X∞ → S∞. By applying v to HMM we obtain the alignment process
V = v(X). We shall call the process V = {Vt}∞

t=1 the Viterbi process. The existence of the Viterbi
process follows from the existence of infinitely many barriers. Now recall that Lemma 3.1
states more thanmerely the existence of infinitely many barriers. Namely, the Lemma actually
also states that almost every realization of a two-dimensional process (X,Y) contains infinitely
many barriers from B synchronized with yM. In other words, almost every realization of
(X,Y) contains infinitely many pairs (zM, yM) such that zM ∈ B. Let τi be the random time
of the rth order l-node in the ith such pair. Thus Xτ1 , Xτ2 , . . . are rth order l-nodes. By the
assumptions on yM we also know that for every i,

Yτi+r
τi+r−M+1 = yM and Yτi = l.

Hence the two-dimensional process (X,Y) is clearly regenerative with respect to the random
times {τi}∞

i=1. Moreover, the proper piecewise construction ensures that the Viterbi process
V is also regenerative with respect to {τi}, see (Lember & Koloydenko, 2008). The random
variables τ1, τ2− τ1, τ3− τ2, . . . are independent and τ2− τ1, τ3− τ2, . . . are i.i.d. Thus, defining
Si := τi+1, i = 0, 1, . . ., we obtain that the three-dimensional process Z = (X,Y,V) is
regenerative with respect to the delayed renewal process {St}∞

t=0. Let Ṽn := vn(Xn), where
vn is a finite Viterbi alignment. The discussion above can be summarized as the following
theorem (see (Kuljus & Lember, 2010) for details).

Theorem 3.1. Let (X,Y) = {(Xt,Yt)}∞
t=1 be an ergodic HMM satisfying A1 and A2. Then there

exists an infinite Viterbi alignment v : X∞ → S∞. Moreover, the finite Viterbi alignments vn : X n →
Sn can be chosen so that the following conditions are satisfied:

R1 the process Z := (X,Y,V), where V := {Vt}∞
t=1 is the alignment process, is a positive recurrent

aperiodic regenerative process with respect to some renewal process {St}∞
t=0;

R2 there exists a nonnegative integer m < ∞ such that for every j ≥ 0, Ṽn
t = Vt for all n ≥ Sj + m

and t ≤ Sj.

We actually know that m relates to r, the order of the barriers in Lemma 3.1, as m = r +
1. Aperiodicity of Z follows from aperiodicity of Y, the latter being a consequence of A1.
Obviously, the choice of vn becomes an issue only if the finite Viterbi alignment is not unique.
In what follows, we always assume that the finite Viterbi alignments vn : X n → Sn are chosen
according to Theorem 3.1. With such choices, the process Z̃n := {(Ṽn

t , Xt,Yt)}n
t=1 satisfies by

R2 the following property: Z̃n
t = Zt for every t = 1, . . . , Sk(n), where k(n) = max{k ≥ 0 :

Sk + m ≤ n}.
Regenerativity of Z makes it possible to obtain without any remarkable effort the SLLN for
Z̃n. To be more precise, let gp be a measurable function for some p ∈ N and let n ≥ p, and
consider the following random variables

Ũn
i := gp(Z̃n

i−p+1, . . . , Z̃n
i ), i = p, . . . , n.

Note that if i ≤ Sk(n), then Ũn
i = Ui := gp(Zi−p+1, . . . , Zi). Let

Mk := max
Sk<i≤Sk+1

|Ũi
Sk+1 + · · ·+ Ũi

i |.
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The random variables Mp, Mp+1, . . . are identically distributed, but for p > 1 not necessarily
independent. The following Theorem in a sense generalizes Th. VI.3.1 in (Asmussen, 2003),
and is an important tool for the applications in Subsection 4.1. The process Z∗ appearing in
the theorem is a stationary version of Z. For the proof and details see (Kuljus & Lember, 2010).

Theorem 3.2. Let gp be such that EMp < ∞ and E|gp(Z∗1 , . . . , Z∗p)| < ∞. Then we have

1
n− p + 1

n

∑
i=p

Ũn
i →

n→∞
EUp = Egp(Z∗1 , . . . , Z∗p) a.s. and in L1.

3.1.6 Doubly-infinite HMMs
Recall that {(Xt,Yt)}t≥1 is a restriction of the doubly-infinite HMM {Xt,Yt}t∈Z to the positive
integers. A great advantage of the barrier-based approach is that it allows us to construct
a piecewise infinite Viterbi alignment also for the doubly-infinite HMM. Thus, there exists
a doubly-infinite Viterbi alignment v : XZ → SZ that is an extension of finite Viterbi
alignments. For the formal definition of a doubly-infinite alignment see (Kuljus & Lember,
2010). An important feature of the doubly-infinite Viterbi alignment is that the decoding
process v is stationary, i.e. shifting the realization x∞−∞ by one time-unit (Bernoulli shift)
entails the same shift of the decoded sequence v(x∞−∞). Hence, applying v to an ergodic
doubly-infinite process X gives us an ergodic doubly-infinite Viterbi process v(X). The
following theorem (Th. 2.2 in (Kuljus & Lember, 2010)) is a doubly-infinite counterpart of
Theorem 3.1.

Theorem 3.3. Let (X,Y) = {(Xt,Yt)}t∈Z be a doubly-infinite ergodic HMM satisfying A1 and A2.
Then there exists an infinite Viterbi alignment v : XZ → SZ . Moreover, the finite Viterbi alignments
vz2

z1 can be chosen so that the following conditions are satisfied:

RD1 the process (X,Y,V), where V := {Vt}t∈Z is the alignment process, is a positively recurrent
aperiodic regenerative process with respect to some renewal process {St}t∈Z;

RD2 there exists a nonnegative integer m < ∞ such that for every j ≥ 0, Ṽn
t = Vt for all n ≥ Sj + m

and S0 ≤ t ≤ Sj;

RD3 the mapping v is stationary, i.e. v(θ(X)) = θv(X), where θ is the usual shift operator, i.e.
θ(. . . , x−1, x0, x1, . . .) = (. . . , x0, x1, x2, . . .).

Note the difference between R2 and RD2. Also, as explained above, property RD3 is
important because it guarantees that the doubly-infinite alignment process V = {Vt}t∈Z as
well as Z = {(Xt,Yt,Vt)}t∈Z is ergodic. Hence, by Birkhoff’s ergodic theorem it holds that for
any integrable function f ,

1
n

n

∑
t=1

f (. . . , Zt−1, Zt, Zt+1, . . .) →
n→∞

E[ f (. . . , Z−1, Z0, Z1, . . .)] a.s. and in L1. (19)

The convergence (19) is an important tool in proving limit theorems. Let Z∗ denote the
restriction of {(Xt,Yt,Vt)}∞

t=−∞ to the positive integers, i.e. Z∗ = {(Xt,Yt,Vt)}∞
t=1. By RD2,

Z∗ is a stationary version of Z as in R1. Thus (X0,Y0,V0)
D
= (X∗1 ,Y∗1 ,V∗1 ) := Z∗1 . Note that the

singly-infinite Viterbi process V in R1 is not defined at time zero so that the random variable
V0 always refers to the doubly-infinite, and hence stationary, case.
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3.1.7 Two-state HMM
The two-state HMM is special in many ways. First, since the underlying Markov
chain is aperiodic and irreducible, all entries of P2 are positive. This implies that the
cluster-assumption A1 is always satisfied. Clearly the models of interest have only one cluster
consisting of both states. Positiveness of the transition probabilities also suggests that there
is no real need to consider either higher order nodes (and therefore higher order barriers) or
nodes that are not strong. That all makes the analysis for the case K = 2 significantly simpler.
The two-state case was first considered in (Caliebe, 2006; Caliebe & Rösler, 2002), where the
existence of infinite Viterbi alignments and regenerativity of the Viterbi process were proved
under several additional assumptions. The proof is based on the central limit theorem and
cannot be extended beyond the two-state case (see (Koloydenko & Lember, 2008; Lember &
Koloydenko, 2008) for a detailed discussion). The barrier-based construction for two-state
HMMs was considered in detail in (Koloydenko & Lember, 2008). The main result of this
paper states that for K = 2 also the assumption A2 can be removed. The only assumption
that remains is the natural assumption that the emission measures P1 and P2 are different.
The main theorem of (Koloydenko & Lember, 2008) states that under this assumption almost
every realization of X has infinitely many strong barriers. This result significantly generalizes
those in (Caliebe & Rösler, 2002).

3.2 Exponential forgetting and infinite PMAP-alignment
The existence of an infinite PMAP-classifier follows from the convergence of the so-called
smoothing probabilities as detailed below: for every s ∈ S, t, z ∈ Z such that t ≥ z, we have

P(Yt = s|Xz, . . . , Xn) →
n→∞

P(Yt = s|Xz, Xz+1 . . .) =: P(Yt = s|X∞
z ) a.s. (20)

The convergence (20) in its turn follows from Levy’s martingale convergence Theorem. When
the model is such that for every t there exists s′ satisfying

P(Yt = s′ |X∞) > P(Yt = s|X∞), ∀s �= s′ a.s., (21)

then the existence of infinite PMAP-alignment follows from (20) with z = 1, because then

argmax
s

P(Yt = s|Xn) = argmax
s

P(Yt = s|X∞) eventually, a.s.

Condition (21) guarantees that argmaxs P(Yt = s|X∞) is almost surely unique. The drawback
of the easy construction of the infinite PMAP-alignment (given (21) holds) is that the ergodic
properties of the PMAP-process still need to be established. In particular, an analogue
of Theorem 3.2 has not yet been established, although we conjecture that under some
assumptions it holds.
At the same time, employing Levy’s martingale convergence Theorem again, we have

lim
z→−∞

P(Yt = s|X∞
z ) = P(Yt = s| · · · , X−1, X0, X1, . . .) =: P(Yt = s|X∞−∞) a.s.

In (Lember, 2011), the rates of the above convergences are studied. In particular, the following
exponential forgetting Theorem (Th. 2.1 in (Lember, 2011)) is proved. In this Theorem, for every
z1, z2 such that −∞ ≤ z1 < z2 ≤ ∞, P(Yt ∈ ·|Xz2

z1 ) denotes the K-dimensional vector of
probabilities and ‖ · ‖ stands for the total variation distance.
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Theorem 3.4. Assume A1. Then there exists a finite random variable C and ρ ∈ (0, 1) such that for
every z, t, n satisfying z ≤ t ≤ n,

‖P(Yt ∈ ·|Xn
z )− P(Yt ∈ ·|X∞−∞)‖ ≤ C(ρt−z + ρn−t) a.s. (22)

The proof of Theorem 3.4 is based on an approach developed in (Cappé et al., 2005). The
approach is based on the fact that given xn, the conditional distribution of the underlying
chain Y is still Markov (albeit generally inhomogeneous). Using this, the difference between
the smoothing probabilities can be bounded by the Dobrushin coefficient of the product of
the (data-dependent) transition matrices. Condition A1 allows us to bound the Dobrushin
coefficient also in the case when the strong mixing condition fails. This is why Theorem 3.4
is more general than the previous similar results where the transition matrix was assumed
to have only positive entries or the emission densities fi were assumed to be all positive
(Cappé et al., 2005; Gerencser & Molnar-Saska, 2002; Gland & Mevel, 2000). It is important to
note that although the technique used in proving the exponential forgetting inequality differs
completely from the one used in proving the infinite Viterbi alignment, the same assumption
A1 appears in both the situations. This gives us a reason to believe that A1 is indeed essential
for HMMs.

4. Applications of infinite segmentation

4.1 Asymptotic risks
Recall (Subsection 1.2) that the quantity R(g, xn) := R(g(xn)|xn) measures the quality of
classifier g when it is applied to observations xn. We are interested in the random variable
R(g, Xn). In particular, we ask whether there exists a constant R such that R(g, Xn) →

n→∞
R

almost surely. This constant, when it exists, will be called asymptotic risk and for a given
risk function, its asymptotic risk depends only on the model and the classifier. Therefore,
asymptotic risks can be used to characterize the long-run properties of different classifiers for
a given HMM. They provide a tool for comparing how well different segmentation methods
work for a particular model. In the following, we present some risk convergence results that
were originally proved in (Kuljus & Lember, 2010; Lember, 2011). We also give the main
ideas behind the proofs. It should be noted that although the risk-based approach allows
us to consider several segmentation methods in a unified framework, we are not aware of
any unified method for proving the convergence of the corresponding risks. Therefore, every
specific risk as well as any particular classifier requires individual treatment. In the following,
we will denote the Viterbi alignment by v and the PMAP-alignment by u.

4.1.1 The R1-risk
The R1-risk is based on the pointwise loss function L1 that was defined in (1). Whenmeasuring
the goodness of segmentation with the R1-risk, the quantity of actual interest is the so-called
empirical or true risk

R1(g,Yn, Xn) :=
1
n

n

∑
t=1

l(Yt, gt(Xn)),

where gt(Xn) is the tth element of the n-dimensional vector g(Xn). Since Yn is hidden, the
empirical risk R1(g,Yn, Xn) cannot be found. If g is the Viterbi classifier, then

R1(v,Yn, Xn) =
1
n

n

∑
t=1

l(Yt, Ṽn
t ),
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and from Theorem 3.2 it follows that

R1(v,Yn, Xn) →
n→∞

El(Y0,V0) =: R1 a.s. and in L1 . (23)

The risk R1(v, Xn) is the conditional expectation of the empirical risk, i.e.

R1(v, Xn) = E[R1(v,Yn, Xn)|Xn].

In (Kuljus & Lember, 2010) it is shown that (23) implies also convergence of the conditional
expectations. Let us summarize this as the following Theorem (Th. 5 in (Kuljus & Lember,
2010)).

Theorem 4.1. Let {(Yt, Xt)}∞
t=1 be an ergodic HMM satisfying A1 and A2. Then there exists a

constant R1 ≥ 0 such that

lim
n→∞

R1(v,Yn, Xn) = lim
n→∞

R1(v, Xn) = R1 a.s. and in L1.

From the convergence in L1 (or by the bounded convergence Theorem) it obviously follows
that the expected risk of the Viterbi alignment converges to R1 as well: ER1(v, Xn)→ R1.
Assuming that the asymptotic risk R1 has been found (by simulations, for example), one could
now be interested in a large deviation type upper bound on P(R1(v,Yn, Xn) − R1 > ε). In
(Ghosh et al., 2009) it has been shown that under the same assumptions as in the present
paper, the following large deviation principle holds:

lim
n→∞

1
n
logP(R1(v,Yn, Xn) > ε + R1) = −I(R1 + ε),

where I is a rate function and ε is small enough. The authors of (Ghosh et al., 2009) do not state
the exact bound on the probability P(R1(v,Yn, Xn) − R1 > ε), but it could be derived from
their proof of the above result. We would like to draw the reader’s attention to how this theme
is different from supervised learning. In supervised learning (pattern recognition) the model
is often unknown, but the variables Yn are observable, thus the empirical risk R1(g,Yn, Xn) for
any classifier could be calculated. The main object of interest then is the unknown asymptotic
risk and the large deviation inequalities are used to estimate the unknown asymptotic risk by
the known empirical risk. In our setting the data Yn are hidden, but the model, and therefore
the asymptotic risk, is known, thus it can be used to estimate the unknown empirical risk.
Consider now the R1-risk for the PMAP-classifier u, that is the minimizer of this
risk. Birkhoff’s ergodic theorem together with the exponential smoothing inequality (22)
immediately imply the existence of a constant R∗1 such that R1(u, Xn) → R∗1 almost surely.
Indeed, from (19) it follows that

1
n

n

∑
t=1

min
s

(
∑
a∈S

l(a, s)P(Yt = a|X∞−∞)
)
→

n→∞
Emin

s

(
∑
a∈S

l(a, s)P(Y0 = a|X∞−∞)
)
=: R∗1 a.s.

The forgetting bound (22) yields

∣∣∣R1(u, Xn)− 1
n

n

∑
t=1

min
s∈S

(
∑
a∈S

l(a, s)P(Yt = a|X∞−∞

)∣∣∣ ≤ C
n

n

∑
t=1

(ρt−1 + ρn−t) a.s., (24)

see (Lember, 2011) for details. The right-hand side of (24) converges to zero almost surely as
n grows. Thus, the following Theorem holds (Th. 3.1 in (Lember, 2011)).

68 Hidden Markov Models, Theory and Applications



Theory of Segmentation 19

Theorem 4.2. Let {(Yt, Xt)}∞
t=1 be an ergodic HMM satisfying A1. Then there exists a constant R∗1

such that R1(u, Xn) →
n→∞

R∗1 a.s. and in L1.

The asymptotic risk R∗1 measures in the long run the average loss incurred by classifying
one symbol. Since the PMAP-classifier is optimal for the R1-risk, then clearly R∗1 ≤ R1 and
their difference indicates how well the Viterbi segmentation performs in the sense of R1-risk
in comparison to the best classifier in the sense of R1-risk. For example, if the pointwise loss
function l is symmetric, then the optimal classifier in the sense of misclassification error makes
on average about R∗1n classification mistakes and no other classifier does better.

4.1.2 The R̄1-risk
Recall (2) which defines the R̄1-risk to be

R̄1(sn|xn) = − 1
n

n

∑
t=1

log pt(st|xn).

To show the convergence of R̄1(v, Xn), we use Theorem 3.3. According to RD3, the
doubly-infinite alignment process v is stationary. Consider the function f : XZ → (−∞, 0],
where

f (x∞−∞) := log p0
(
v0(x∞−∞

)|x∞−∞) = logP(Y0 = V0|X∞−∞ = x∞−∞).

It is not hard to see that f
(
θ(t)(x∞−∞)

)
= logP(Yt = Vt|X∞−∞ = x∞−∞). Thus, by (19),

− 1
n

n

∑
t=1

logP(Yt = Vt|X∞−∞) →
n→∞

−E
(
logP(Y0 = V0|X∞−∞)

)
=: R̄1 a.s. and in L1,

provided the expectation is finite. This convergence suggests that by suitable approximation
the following convergence also holds:

lim
n→∞

R̄1(v, Xn) = lim
n→∞

− 1
n

n

∑
t=1

logP(Yt = Ṽn
t |Xn) = R̄1 a.s. (25)

The difficulties with proving the convergence of R̄1(v, Xn) are caused mainly by the fact that
the exponential forgetting inequality in (22) does not necessarily hold for the logarithms. This
inequality would hold if the probability P(Y0 = V0|X∞−∞) were bounded below, i.e. if

P(Y0 = V0|X∞−∞) > ε a.s. (26)

held for some ε > 0. Then by (22) it would hold that almost surely P(Yt = Vt|X∞) > ε
2

eventually, and the inequality | log a− log b| ≤ 1
min{a,b} |a− b| together with (22) would imply

− 1
n

n

∑
t=1

logP(Yt = Vt|Xn) →
n→∞

R̄1 a.s.

Then, by an argument similar to the one in the proof of Theorem 3.2, the convergence (25)
would follow. Unfortunately, (26) need not necessarily hold. In (Kuljus & Lember, 2010) the
condition (26) is replaced by the following weaker condition: there exists α > 0 such that

E
( 1

P(Y0 = V0|X∞−∞)

)α
< ∞ . (27)
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It can be shown (Prop. 4.1 and Lemma 3 in (Kuljus & Lember, 2010)) that under A1 the
inequality (27) holds. The condition in (27) turns out to be sufficient to prove the convergence
of R̄1(v, Xn). The discussion above can be summarized in the following theorem (Th. 4.1 in
(Kuljus & Lember, 2010)).

Theorem 4.3. Let {(Yt, Xt)}∞
t=1 be an ergodic HMM satisfying A1 and A2. Then

lim
n→∞

R̄1(v, Xn) = R̄1 a.s. and in L1 .

From the preceding argument it is clear that the convergence of the R̄1-risk is rather easy to
prove when instead of the Viterbi alignment the PMAP-alignment is used. Indeed, by (19),

− 1
n

n

∑
t=1

max
s∈S

logP(Yt = s|X∞−∞) →
n→∞

E[max
s∈S

logP(Y0 = s|X∞−∞)] =: R̄∗1 a.s. and in L1.

Since maxs∈S P(Yt = s|Xn) ≥ K−1, for the PMAP-alignment the condition (26) is trivially
satisfied. From the exponential forgetting inequality (22) it then follows (Cor. 4.2 in (Kuljus &
Lember, 2010)) that

R̄1(u, Xn) = − 1
n

n

∑
t=1

max
s∈S

logP(Yt = s|Xn) →
n→∞

R̄∗1 a.s. and in L1 .

Again, since the R̄1-risk is minimized by the PMAP-classifier, it holds that R̄∗1 ≤ R̄1.

4.1.3 The R̄∞-risk
Recall (Subsection 2.3.1) that the R̄∞-risk is defined as the negative log-posterior probability
given observations xn, i.e. R̄∞(sn|xn) = − 1

n log p(sn|xn). Let p(xn) denote the likelihood of
xn. Then

p(Ṽn|Xn) = P(Yn = Ṽn|Xn) =
p(Xn|Ṽn)P(Yn = Ṽn)

p(Xn)
,

therefore

R̄∞(v, Xn) = − 1
n

(
log p(Xn|Ṽn) + logP(Yn = Ṽn)− log p(Xn)

)
.

By Theorem 3.2, the following convergences hold (see (Kuljus & Lember, 2010) for details):

1
n
log p(Xn|Ṽn) →

n→∞ ∑
s∈S

E
(
log fs(X0)Is(V0)

)
a.s.,

1
n
logP(Yn = Ṽn) →

n→∞
E(log pV0V1 ) a.s.

The last convergence − 1
n log p(Xn) → HX , where HX is the entropy rate of X, follows from

the Shannon-McMillan-Breiman Theorem. The ideas above are formalized in the following
Theorem (Th. 5.1 in (Kuljus & Lember, 2010)).

Theorem 4.4. Let for every s ∈ S the function log fs be Ps-integrable. Then there exists a constant
R̄∞ such that

R̄∞(v, Xn) →
n→∞

R̄∞ a.s. and in L1.
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By the same argument, there exists another constant R̄Y
∞ such that

− 1
n
logP(Yn|Xn) →

n→∞
R̄Y

∞ a.s. and in L1.

Since E[logP(Yn|Xn)] = −H(Yn|Xn), where H(Yn|Xn) stands for the conditional entropy of
Yn given Xn, the limit R̄Y

∞ could be interpreted as the conditional entropy rate of Y given X,
it is not the entropy rate of Y. Clearly, R̄∞ ≤ R̄Y

∞, and the difference of these two numbers
shows how much the Viterbi alignment inflates the posterior probability.

4.2 Adjusted Viterbi training
So far we have assumed that the model is known, i.e. both the transition matrix as well as
the emission distributions Ps are given. Often the model is given up to parametrization and
then parameter estimation becomes of interest. Hence, in this subsection we assume that all
emission densities are of the form fs(x; θs), where θs ∈ Θs is the emission parameter to be
estimated. In practice, e.g. in speech recognition, the transition matrix is often assumed to
be known and the emission parameters are the only parameters to be estimated, sometimes
however the transition matrix P = (pij) is to be estimated as well. Thus, in general, the
set of unknown parameters is ψ = (P, θ), where θ = (θ1, θ2, . . . , θK). (We ignore π, the
initial distribution, since in the stationary regime π is determined by P, whereas otherwise
its estimation would require multiple samples xn.)
The classical algorithm for finding the maximum likelihood estimators of HMM-parameters
is the so-called EM-training (see, e.g. (Cappé et al., 2005; Ephraim & Merhav, 2002;
Rabiner, 1989)). Although theoretically justified, the EM-training might be very slow and
computationally expensive. Therefore, in practice, the EM-training is sometimes replaced by
the much quicker Viterbi training (VT), where the expectation over all alignments (E-step) is
replaced by the maximum a posteriori alignment. In other words, in the kth iteration the
Viterbi alignment is performed using ψ(k), the current estimate of the parameters. According
to this alignment, the observations xn are divided into K subsamples, where the sth subsample
consists of those observations that are aligned with the state s. In each subsample the
maximum likelihood estimator μ̂s of θs is found. The estimate of the transition probability
p̂ij is the proportion of states i followed by the state j in the Viterbi alignment. The formal
algorithm of VT estimation is as follows.
Viterbi training (VT)

1. Choose initial values for the parameters ψ(k) = (P(k), θ(k)), k = 0.

2. Given the current parameters ψ(k), obtain the Viterbi alignment v(k) = v(xn;ψ(k)).

3. Update the regime parameters P(k+1) :=
(

p̂n
ij
)
, i, j ∈ S, as given below:

p̂n
ij :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n−1
∑

m=1
I{i}(v

(k)
m )I{j}(v

(k)
m+1)

n−1
∑

m=1
I{i}(v

(k)
m )

, if
n−1
∑

m=1
I{i}(v

(k)
m ) > 0 ,

P
(k)
ij , otherwise.

4. Assign xm, m = 1, 2, . . . , n, to the class v(k)m . Equivalently, define empirical measures

P̂n
s (A;ψ(k), xn) :=

∑n
m=1 IA×{s}(xm, v(k)m )

∑n
m=1 I{s}(v

(k)
m )

, A ∈ B, s ∈ S.
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5. For each class s ∈ S, obtain the ML estimator μ̂n
s (ψ

(k), xn) of θs, given by:

μ̂n
s (ψ

(k), xn) := arg max
θ′s∈Θs

∫
log fs(x; θ′s)P̂n

s (dx;ψ(k), xn),

and for all s ∈ S let θ
(k+1)
s :=

⎧⎨
⎩

μ̂n
s (ψ

(k), xn), if
n
∑

m=1
I{s}(v

(k)
m ) > 0 ,

θ
(k)
s , otherwise.

For better interpretation of VT, suppose that at some step k, ψ(k) = ψ, thus v(k) is obtained
using the true parameters. Let yn be the actual hidden realization of Yn. The training
pretends that the alignment v(k) is perfect, i.e. v(k) = yn. If the alignment were perfect, the
empirical measures P̂n

s , s ∈ S, would be obtained from the i.i.d. samples generated from
the true emission measures Ps and the ML estimators μ̂n

s would be natural estimators to
use. Under these assumptions P̂n

s ⇒ Ps almost surely, and provided that { fs(·; θs) : θs ∈
Θs} is a Ps-Glivenko-Cantelli class and Θs is equipped with a suitable metric, we would
have limn→∞ μ̂n

s = θs almost surely. Hence, if n is sufficiently large, then P̂n
s ≈ Ps and

θ
(k+1)
s = μ̂n

s ≈ θs = θ
(k)
s for every s ∈ S. Similarly, if the alignment were perfect, then

limn→∞ p̂n
ij = P(Y2 = j|Y1 = i) = pij almost surely. Thus, for the perfect alignment

ψ(k+1) = (P(k+1), θ(k+1)) ≈ (P(k), θ(k)) = ψ(k) = ψ ,

i.e. ψ would be approximately a fixed point of the training algorithm.
Certainly the Viterbi alignment in general is not perfect evenwhen it is computedwith the true
parameters. The empirical measures P̂n

s can be rather far from those based on the i.i.d. samples
from the true emission measures Ps even when the Viterbi alignment is performed with
the true parameters. Hence we have no reason to expect that limn→∞ μ̂n

s (ψ, Xn) = θs and
limn→∞ p̂n

ij(ψ, Xn) = pij almost surely. Moreover, we do not even knowwhether the sequences

of empirical measures P̂n
s (ψ, Xn) or the ML estimators μ̂n

s (ψ, Xn) and p̂n
ij(ψ, Xn) converge

almost surely at all. Here again Theorem 3.2 answers the question. From Theorem 3.2 it
follows that for any measurable set A, P̂n

s (A) → P(X0 ∈ A|V0 = s) =: Qs(A) a.s., where
P̂n

s = P̂n
s (ψ, Xn). This implies that the empirical measures P̂n

s convergeweakly to themeasures
Qs almost surely, i.e. for every s ∈ S,

P̂n
s ⇒ Qs a.s. (28)

Convergence (28) is the main statement of Theorem 4.1 in (Lember & Koloydenko, 2008). In
(Koloydenko et al., 2007) it has been shown that if fs(x; θs) satisfy some general conditions
and if Θs are closed subsets of Rd, then convergence (28) implies convergence of μ̂n

s (ψ, Xn),
i.e.

μ̂n
s (ψ, Xn) →

n→∞
μs a.s., where μs(ψ) := arg max

θ′s∈Θs

∫
log fs(x; θ′s)Qs(dx). (29)

Since in general Qs �= Ps(θs), clearly μs need not equal θs = argmax
θ′s

∫
log fs(x; θ′s)Ps(dx).

Similarly, Theorem 3.2 also implies that

p̂n
ij(ψ; Xn) →

n→∞
P(V1 = j|V0 = i) =: qij a.s. (30)
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Again, in general pij �= qij. In order to reduce the biases θs−μs and pij− qij, we have proposed
the adjusted Viterbi training. We know that convergences (29) and (30) hold for any parameter
ψ given that A1 and A2 hold. Since the limits μs and qij depend on the true parameters, we
can consider the mappings

ψ �→ μs(ψ), ψ �→ qij(ψ), s, i, j = 1, . . . ,K. (31)

These mappings do not depend on the observations xn, hence the following corrections are
well-defined:

Δs(ψ):=θs − μs(ψ), Rij(ψ):=pij − qij(ψ), s, i, j = 1, . . . ,K. (32)

Based on (32), the adjusted Viterbi training can be defined as follows.
Adjusted Viterbi training (VA)

1. Choose initial values for the parameters ψ(k) = (P(k), θ(k)), k = 0.

2. Given the current parameters ψ(k), obtain the Viterbi alignment v(k) = v(xn;ψ(k)).

3. Update the regime parameters P(k+1) :=
(

p(k+1)
ij

)
as follows:

p(k+1)
ij := p̂n

ij + Rij(ψ
(k)),

where p̂n
ij is defined as in VT.

4. Based on v(k), define empirical measures P̂n
s , s ∈ S, as in VT.

5. Update the emission parameters as follows:

θ
(k+1)
s := Δs(ψ

(k)) +

{
μ̂n

s (ψ
(k), xn), if ∑n

m=1 I{s}(v
(k)
m ) > 0,

θ
(k)
s , otherwise.

Here μ̂n
s (ψ

(k), xn) is as in VT.

Provided n is sufficiently large, VA has approximately the true parameters ψ as its fixed point
as desired. Indeed, suppose ψ(k) = ψ. From (29) we obtain that for every s ∈ S,

μ̂n
s (ψ

(k), xn) = μ̂n
s (ψ, xn) ≈ μs(ψ) = μs(ψ

(k)).

Similarly, (30) gives that for all i, j ∈ S,

p̂n
ij(ψ

(k), xn) = p̂n
ij(ψ, xn) ≈ qij(ψ) = qij(ψ

(k)).

Thus, for every s, i, j ∈ S,

θ
(k+1)
s = μ̂n

s (ψ, xn) + Δs(ψ) ≈ μs(ψ) + Δs(ψ) = θs = θ
(k)
s ,

p(k+1)
ij = p̂n

ij(ψ, xn) + Rij(ψ) ≈ qij(ψ) + Rij(ψ) = pij = p(k)ij .

Hence, ψ(k+1) = (P(k+1), θ(k+1)) ≈ (P(k), θ(k)) = ψ(k). The simulations in (Koloydenko et al.,
2007; Lember & Koloydenko, 2007), presented in part in Example 2 below, show that the
asymptotic fixed point property does make a difference. Namely, unlike the VT estimates,
the VA ones are nearly as accurate (and can even be more accurate than) as the ones obtained
by the EM-training. At the same time, VA is comparable to VT in terms of the computational
cost, and therefore may be preferred to EM.
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4.2.1 Example 2
The following simulation study is adapted from (Koloydenko et al., 2007). We consider a
two-state HMM with the transition matrix

P =

(
1− ε ε

ε 1− ε

)
, ε ∈ (0, 0.5],

and with the emission distributions P1 = N (θ1, 1) and P2 = N (θ2, 1). Thus, there are two
emission parameters θ1 and θ2 and one regime parameter ε in this model. Assume without
loss of generality that θ1 < θ2 and let a = 0.5(θ2 − θ1). With ε = 0.5 this model reduces to the
i.i.d. (mixture) model. The correction function Δ(a, ε) was estimated off-line by simulations
and achieves its maximum at ε = 0.5, i.e. in the i.i.d. case. Using the obtained Δ-function, we
apply the adjusted Viterbi training and compare it with the VT- and EM-algorithms. Tables
1-2 present simulation results obtained from samples of size 106 and focus on estimation of

the emission parameters. The iterations were initialized by setting θ
(0)
1 and θ

(0)
2 to the first and

third quartiles of x1, x2, . . . , xn, respectively, and stopped as soon as the L∞-distance between
successive estimates fell below 0.01. From Tables 1-2 it can be seen that the Viterbi training
is quickest to converge, but its estimates are evidently biased. Accuracy of the adjusted
Viterbi training is comparable to that of the EM-algorithm, while VA converges somewhat
more rapidly than EM. Each step of EM requires significantly more intensive computations,
so that one should expect the overall run-time of VA to be notably shorter than that of EM.
Using the same stopping rule as before, we also test the three algorithms for the fixed point
property. From Tables 3-4 it is evident that both EM and VA do approximately satisfy this
property, whereas VT moves the true parameters to a notably different location.

EM VT VA
Step 0 (-0.689,0.687) (-0.689,0.687) (-0.689,0.687)
Step 1 (-0.477,0.475) (-0.537,0.536) (-0.460,0.459)
Step 2 (-0.385,0.384) (-0.474,0.474) (-0.359,0.358)
Step 3 (-0.335,0.333) (-0.445,0.445) (-0.305,0.307)
Step 4 (-0.303,0.301) (-0.429,0.430) (-0.273,0.274)
Step 5 (-0.281,0.279) (-0.420,0.422) (-0.252,0.254)
Step 6 (-0.265,0.264) (-0.239,0.241)
Step 7 (-0.253,0.252) (-0.229,0.232)
Step 8 (-0.244,0.243)

L1 error 0.087 0.442 0.061
L2 error 0.061 0.312 0.043
L∞ error 0.044 0.222 0.032

Table 1. Estimating θ1 and θ2, when ε = 0.2, a = 0.2, θ1 = −0.2 and θ2 = 0.2.

EM VT VA
Step 0 (-1.050,1.053) (-1.050,1.053) (-1.050,1.053)
Step 1 (-1.013,1.015) (-1.166,1.169) (-1.014,1.016)
Step 2 (-1.003,1.005) (-1.165,1.169) (-1.004,1.006)

L1 error 0.008 0.334 0.010
L2 error 0.006 0.236 0.007
L∞ error 0.005 0.169 0.006

Table 2. Estimating θ1 and θ2, when ε = 0.5, a = 1, θ1 = −1 and θ2 = 1.
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EM VT VA
Step 0 (-0.200,0.200) (-0.200,0.200) (-0.200,0.200)
Step 1 (-0.198,0.202) (-0.252,0.254) (-0.198,0.200)
Step 2 (-0.298,0.302)
Step 3 (-0.333,0.339)
Step 4 (-0.357,0.367)
Step 5 (-0.373,0.386)
Step 6 (-0.383,0.399)
Step 7 (-0.387,0.408)

L1 error 0.003 0.396 0.002
L2 error 0.002 0.280 0.002
L∞ error 0.002 0.208 0.002

Table 3. Comparison of algorithms for ε = 0.2 and a = 0.2, and θ
(0)
1 = θ1 and θ

(0)
2 = θ2.

EM VT VA
Step 0 (-1.000,1.000) (-1.000,1.000) (-1.000,1.000)
Step 1 (-0.998,1.000) (-1.165,1.167) (-0.998,1.000)
Step 2 (-1.165,1.167)

L1 error 0.002 0.332 0.002
L2 error 0.002 0.235 0.002
L∞ error 0.002 0.167 0.002

Table 4. Comparison of algorithms for ε = 0.5 and a = 1, and θ
(0)
1 = θ1 and θ

(0)
2 = θ2.

4.3 Generalizations, other training ideas and implementation
4.3.1 Segmentation-based training
As we have seen above, the drawback of VT stems from the fact that the Viterbi process
differs systematically from the underlying chain, so that the empirical measures obtained by
the Viterbi segmentation can differ significantly from the true emission distributions Ps even
when the parameters used to obtain the Viterbi alignment were correct and n were arbitrarily
large. Hence, using the Viterbi alignment for segmentation in the training procedure is not
theoretically justified.
Since the PMAP-alignment minimizes the error rate, using the PMAP-segmentation in the
training procedure could be the lesser of the two evils. The empirical measures obtained by
the PMAP-alignment would, of course, also differ from the emission measures even when the
parameters are correct and n is arbitrarily large, and in particular the transition probability
estimators can easily be biased. However, since the PMAP-alignment has more correctly
estimated states in the long run, the emission estimators μ̂n obtained by the PMAP-alignment
are expected to be closer to theML estimators that would have been obtained if the underlying
state sequence were known. A tandem training that would synergize the Viterbi and PMAP
alignments may also be worth considering.
In general, one can speak about segmentation-based training, where the observations are divided
into K subsamples (empirical measures) according to a segmentation procedure with current
parameter estimates. Every subsample is considered to be an i.i.d. sample from Ps and
the corresponding MLE is found. The transition probabilities are directly obtained from
the segmentation. Once again, the PMAP-training should give more precise estimates of
the emission parameters than the Viterbi training, but the PMAP-alignment might produce
forbidden transitions (Section 1.2). Thus, even when a transition probability is set to zero
initially, or turns zero at some iteration, it would not necessarily remain zero at later iterations
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of the PMAP training. This is different fromVTwhich cannot turn a zero transition probability
positive. This more liberal behavior of the PMAP-training can easily be constrained “by
hand”, which would be appropriate when, for example, the forbidden transitions are known
a priori. More generally, the k-block alignment defined in Subsection 2.4 could be considered
in the training procedure which would automatically preserve zero transition probabilities.
Preservation of zero transition probabilities is not necessarily a goal in itself as it can prevent
the algorithm from detecting rare transitions. However, using the k-block alignment for
segmentation based training is worth considering as further optimization may be achieved
by varying k.
Recall that the adjusted Viterbi training is largely based on Theorem 3.2, since this is the main
theoretical result behind the existence of the adjustments in (32). Although not yet proved, we
believe that a counterpart of Theorem 3.2 holds for many alignments other than Viterbi. Now,
if the training is based on an alignment for which the above result does hold, the adjusted
version of the training can then be defined along the lines of the Viterbi training.

4.3.2 Independent training
The order of the observations xn = (x1, . . . , xn) provides information about the transition
probabilities. When we reorder the observations, we loose all information about the
transitions, but the information about the emission distributions remains. Often the emission
parameters are the primary interest of the training procedure, the transition matrix could for
example be known or considered to be a nuisance parameter. Then it makes sense to estimate
the emission parameters by treating the observations x1, . . . , xn as an i.i.d. sample from a
mixture density ∑s πs fs(·; θs), assuming π to be the invariant distribution of P. This approach
is introduced in (Koloydenko et al., 2007; Lember & Koloydenko, 2008) under the name of
independent training. Besides the EM-training the Viterbi training can also be used for data that
is regarded as independent, and in this case it is equivalent to the PMAP-training. As shown in
(Koloydenko et al., 2007) (see Subsection 4.2.1), the bias Δs is relatively large for the i.i.d. case,
which makes the replacement of VT by VA particularly attractive in this case. The advantage
of the VA-based independent training over VA is that training is usually significantly easier in
the i.i.d. case. In particular, the adjustment terms Δs are more likely to be found theoretically.
Also, the i.i.d. case is usually computationally much cheaper. Another appealing procedure
that could be applied for independent training is VA2 that will be described next. For a
more detailed discussion about independent training, see (Koloydenko et al., 2007; Lember
& Koloydenko, 2008). For VA in the i.i.d. case, see (Lember & Koloydenko, 2007).

4.3.3 VA2
For the case of i.i.d. data from a mixture density ∑s πs fs(·; θs), a slightly modified version of
VA was proposed in (Lember & Koloydenko, 2007). To explain the main idea, assume that the
weights πs are known so that the emission parameters θ = (θ1, . . . , θK) are the only parameters
to be estimated. VA2 is based on the observation that for the i.i.d. case the segmentation of the
data into subsamples is induced by a partition of the sample space. Indeed, given the current
estimates θ(k), the observation xt belongs to the subsample corresponding to state 1 if and only

if xt ∈ S1 := {x : π1 f1(x; θ(k)1 ) ≥ πs fs(x; θ(k)s ), ∀s ∈ S}. The sets S1, . . . ,SK form a partition of
X (upto the ties) that depends only on θ(k). It is intuitively clear, especially in the case of K = 2,
that many different parameters θ could induce the same partition. In particular, θ(k) could
induce the partition corresponding to the true parameter θ∗ even when θ(k) �= θ∗. In that case,
the ML estimates μ̂s would be the same for both θ(k) and θ∗. However, since the correction
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term Δ(θ(k)) does depend on θ(k), it follows that the adjusted estimate θ(k+1) need not be close
to θ∗. The adjustment in VA2 tries to overcome the mentioned deficiency. In particular, the
parameters θ(k) are taken into account via their induced partition only. Given the partition
and the ML estimates μ̂s, the new adjustment seeks θ that would asymptotically induce the
given partition and the given estimates. Now, if the partition corresponded to θ∗, then θ(k+1)

obtained in such a way would be close to θ∗. For details, see (Lember & Koloydenko, 2007).

4.3.4 Implementation
The difficulties in implementing VA are caused by the fact that apart from the i.i.d. case,
finding the adjustment functions Δ(ψ) theoretically is very hard. However, since the
adjustments do not depend on the data, they can be found by simulations independently
of the data. It is important to point out that even if such simulations require significant effort,
they are done off-line and can be reused with the same model.
Another, computationally less demanding approach, is the so called stochastically adjusted
Viterbi training (SVA). Instead of estimating the correction at every point as in the previous
approach, SVA estimates the correction by simulations at every iteration and therefore only at
the points visited by the algorithm. Clearly, if the number of iterations is relatively small, this
method should require less overall computing. On the other hand, if a model is to be used
repeatedly, estimating the correction function off-line as in the previous example might still
be preferable.
Several implementation ideas for the i.i.d. case, i.e. for estimating mixture parameters, are
discussed in (Lember & Koloydenko, 2007). The implementation of VA2 depends on the
model. Instead of calculating the correction function Δ, for VA2 a certain inverse function
should be found. This might be difficult to do even for simple models, but when it is done, it
can be reused again and again.

4.4 Segmentation with partially revealed observations
Consider the situation where some hidden states can be revealed on request, albeit possibly
at a very high cost. The purpose of uncovering a number of states is to improve the alignment
by reducing the number of incorrectly estimated states. With the additional information
a constrained alignment can be obtained, which in general will lower the empirical risk
considerably. The decision on how many and which states to reveal is a trade-off between
the cost of learning an unknown state and the reduction in the alignment risk.
One way to approach the problem of which states to reveal is to study the conditional
misclassification probabilities at every time point t = 1, . . . , n, given the observations
X1, . . . , Xn. One can order the calculated conditional probability P(Yt �= gt(Xn)|Xn =
xn), t = 1, . . . , n, and ask for the actual states of the points with the largest probability.
This approach involves finding the alignment and computing the conditional probabilities
for every single realization. In order to use this approach, one needs to know the
conditional probability of incorrect segmentation given a certain observation, or a segment
of observations, in advance. Let us denote the conditional misclassification probability given
an observation x by P(incorrect|x).

4.4.1 Definition of misclassification probability for Viterbi alignment
In this section l(at, bt) stands for the symmetric pointwise loss: l(at, bt) = 1 if at �= bt and
0 otherwise. Thus the R1-risk measures the expected number of misclassified observations.
Recall that (X0,Y0,V0) belongs to the stationary version of (Xt,Yt,Vt). Define for every
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measurable A,
Pcorrect(A) := P(X0 ∈ A|Y0 = V0) ,

Pincorrect(A) := P(X0 ∈ A|Y0 �= V0) .

The probability measure P(in)correct can be interpreted as the asymptotic distribution of an
observation given the Viterbi alignment at that point is (in)correct. Because of stationarity of
X the distribution of every observation is given by

P(A) = P(X0 ∈ A) = P(X0 ∈ A|Y0 = V0)P(Y0 = V0) + P(X0 ∈ A|Y0 �= V0)P(Y0 �= V0)

= Pcorrect(A)(1− R1) + Pincorrect(A)R1,

where R1 is the asymptotic risk as defined in Subsection 4.1.1. Thus, the probability
P(incorrect|·) can be defined as follows:

P(incorrect|A) := P(Y0 �= V0|X0 ∈ A) =
Pincorrect(A)R1

Pcorrect(A)(1− R1) + Pincorrect(A)R1
.

The probability distribution of any observation of X can be written as a weighted sum of
emission distributions Ps: PX = ∑s∈S πsPs. Because the emission distributions Ps have
densities fs with respect to some measure μ, from the equality P(A) = Pcorrect(A)(1− R1) +

Pincorrect(A)R1 it follows that P(in)correct have densities with respect to μ, we denote them by
f (in)correct. The conditional probability that the Viterbi alignment makes a mistake given that
the observation is x, can now be defined as

P(incorrect|x) := P(Y0 �= V0|x) = f incorrect(x)R1

f correct(x)(1− R1) + f incorrect(x)R1
. (33)

Observe that P(incorrect|x) depends only on the model. This implies that once the alignment
error probability for a given x is estimated, we can use this value whenever working with
the same model. It is also important to emphasize that P(incorrect|x) is a function of both
f correct and f incorrect, thus it takes into account both the proportions of correctly and incorrectly
classified states that emit x. For example, if f incorrect(xt) and f incorrect(xu) are both large
but f correct(xt) is much smaller than f correct(xu), then it makes more sense to seek more
information on Y at time t.
One way to estimate P(incorrect|x) is from simulations by using empirical measures. If
we would know the true underlying states Y1, . . . ,Yn for a given sequence of observations
X1, . . . , Xn, we could after performing the Viterbi segmentation calculate the number of
correctly and incorrectly classified states. We could also tally (in)correctly classified states
with emissions in A. Thus, we can consider empirical measures Pcorrect

n and Pincorrect
n defined

as follows:

Pcorrect
n (A) :=

∑n
t=1 IA×{0}(Xt, l(Yt, vt(Xn)))

∑n
t=1 I{0}(l(Yt, vt(Xn)))

=
∑n

t=1 IA(Xt)I{Yt=Ṽn
t }

∑n
t=1 I{Yt=Ṽn

t }
,

Pincorrect
n (A) :=

∑n
t=1 IA×{1}(Xt, l(Yt, vt(Xn)))

∑n
t=1 I{1}(l(Yt, vt(Xn)))

=
∑n

t=1 IA(Xt)I{Yt �=Ṽn
t }

∑n
t=1 I{Yt �=Ṽn

t }
.
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Similarly, we can define the empirical measure Pn(incorrect|·) that calculates the proportion
of classification errors given the observation belongs to A ∈ B:

Pn(incorrect|A) :=
∑n

t=1 IA×{1}(Xt, l(Yt, Ṽn
t ))

∑n
t=1 IA(Xt)

=
∑n

t=1 IA(Xt)I{Yt �=Ṽn
t }

∑n
t=1 IA(Xt)

.

In practice, the empirical measures defined above are unknown. It follows directly from

Theorem 3.2 that the empirical measures P(in)correct
n and Pn(incorrect|·) converge almost surely

to P(in)correct and P(incorrect|·) respectively, i.e. for every A ∈ B,

P(in)correct
n (A)→ P(in)correct(A) , Pn(incorrect|A)→ P(incorrect|A) a.s.

These convergences allow us to estimate the densities f (in)correct, R1, and hence also
P(incorrect|x), when it is difficult to find any of these quantities analytically.
Example 3. This example demonstrates estimation of f correct, f incorrect and P(incorrect|x)
by simulations. A two-state HMM with emission distributions N (3, 22) and N (10, 32) and
transition matrix

P =

(
0.3 0.7
0.7 0.3

)

was considered. The estimates of the densities f correct, f incorrect and P(incorrect|x) for a sample
of size n = 100000 are presented in Figure 4 graphs (a), (b) and (c), respectively. The R-package
‘HiddenMarkov’ (Harte, 2010) was used for these simulations.
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Fig. 4. Estimates of f correct, f incorrect and P(incorrect|x).
In (Raag, 2009), the decrease in the number of Viterbi alignment errors when a number of
true states are uncovered, is compared for the following three cases: states are revealed
randomly, the states with largest conditional point risk are uncovered, the states with the
largest misclassification error are revealed. The simulation studies in (Raag, 2009) investigate
for example, how the number of mistakes of the constrained alignments depends on the
transition probabilities or dependence between the states, and how the decrease in the number
of errors is affected by the number of states in the model.

4.4.2 Generalization
Thus far, we have defined the misclassification probability conditionally given a single
observation on X. Stationarity makes this probability time invariant. Now we are going to
generalize this definition and take into account also information from the neighbors of X. We
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will consider a (2k + 1)-tuple of observations Xt−k, . . . , Xt, . . . , Xt+k, k > 0. In the following,
the tuples Xk

−k,Y
k
−k,V

k
−k are from the doubly-infinite and hence stationary process Z.

Let A1 × . . .× A2k+1 ∈ B2k+1. By analogy with the single observation case, for (2k + 1)-tuples
of observations we can define the following measures:

Pincorrect(A1 × . . .× A2k+1) = P(X−k ∈ A1, . . . , Xk ∈ A2k+1|Y0 �= V0)

Pcorrect(A1 × . . .× A2k+1) = P(X−k ∈ A1, . . . , Xk ∈ A2k+1|Y0 = V0)

P(incorrect|A1 × . . .× A2k+1) = P(Y0 �= V0|X−k ∈ A1, . . . , Xk ∈ A2k+1)

Clearly, the decomposition

P(X−k ∈ A1, . . . , Xk ∈ A2k+1) = Pincorrect(A1 × . . .× A2k+1)R1

+Pcorrect(A1 × . . .× A2k+1)(1− R1) (34)

holds. Since the random variables Xi have densities with respect to μ, it follows that the vector
Xk
−k has the density with respect to the product measure μ2k+1. From (34) it now follows that

the measures P(in)correct have densities f (in)correct with respect to μ2k+1 as well so that (33)
generalizes as follows:

P(incorrect|x2k+1) := P(Y0 �= V0|Xk
−k = x2k+1) =

f incorrect(x2k+1)R1

f correct(x2k+1)(1− R1) + f incorrect(x2k+1)R1
.

The probability P(incorrect|x2k+1) is the asymptotic conditional misclassification probability
given the neighbors. It is interesting to note that for some neighborhood this probability can
be bigger than 0.5, see Figure 5. Obviously, as in the single observation case, the probability
P(incorrect|x2k+1) could be estimated by simulation. For this, one can define the empirical
measures

Pcorrect
n (A1 × . . .× A2k+1) =

∑n−k
t=k+1 I{A1×...×A2k+1}×{0}(Xt−k, . . . , Xt+k, l(Yt, Ṽn

t ))

∑n−k
t=k+1 I{0}(l(Yt, Ṽn

t ))
,

Pincorrect
n (A1 × . . .× A2k+1) =

∑n−k
t=k+1 I{A1×...×A2k+1}×{1}(Xt−k, . . . , Xt+k, l(Yt, Ṽn

t ))

∑n−k
t=k+1 I{1}(l(Yt, Ṽn

t ))
,

Pn(incorrect|A1 × . . .× A2k+1) =
∑n−k

t=k+1 I{A1×...×A2k+1}×{1}(Xt−k, . . . , Xt+k, l(Yt, Ṽn
t ))

∑n−k
t=k+1 I{A1×...×A2k+1}(Xt−k, . . . , Xt+k)

.

From Theorem 3.2 it follows again that the empirical measures converge to the corresponding
theoretical ones at every Borel set almost surely (hence the measures converge weakly almost
surely). Therefore, the densities f (in)correct as well as the probabilities P(incorrect|x2k+1) could
be estimated.
Example 4. This example illustrates how the misclassification error P(incorrect|x2k+1), k = 1,
depends on the transition probabilities. We consider a two-state HMM, where the process
X can take on the values 1, 2, 3, 4. The transition probability matrix and the emission
distributions are as follows:

P =

(
1− ε ε

ε 1− ε

)
, P1 = (1/2, 1/8, 1/8, 1/4), P2 = (1/5, 1/5, 1/10, 1/2).
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For each value of ε a chain of n = 10000 observations was simulated and the misclassification
probabilities P(incorrect|111) and P(incorrect|141) were estimated. To estimate the standard
deviations of the estimators, the simulations were replicated 100 times. In Figure 5, the
estimated probabilities are plotted together with their +/− one standard deviation bands.

Fig. 5. Estimates of P(incorrect|111) and P(incorrect|141).
Example 5. In the previous example, P(incorrect|141) ≈ 0.6 for ε = 0.41, see Figure 5. Nowwe
consider the HMM of Example 4 for ε = 0.41 and study how P(incorrect|141) is affected when
we intervene in the Viterbi segmentation process with an increasing intensity. Let m denote
the number of occurrences of the word 141 in the simulated process. Then, for example, the
intensity 0.2 means that we would intervene in classification the process at 0.2m sites. The
following four types of interventions were studied:

1) at uniformly distributed random times t, Ṽn
t was replaced by the opposite state;

2) at uniformly distributed random times t, Ṽn
t was replaced by the true state Yt;

3) at the times of occurrence of 141, Ṽn
t was replaced by the opposite state;

4) at the times of occurrence of 141, Ṽn
t was replaced by the true state Yt.

For each thereby constrained Viterbi segmentation, the error rate – the proportion of
misclassified states of the constrained alignment – was computed. The results are plotted
in Figure 6. The most interesting is of course to see, how the number of Viterbi alignment
errors decreases depending on how many true states are revealed.
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Fig. 6. Misclassification probability as a function of intervention rate.
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1. Introduction

In this chapter we consider classification of systems that can be modeled as hidden Markov
models (HMMs). Given two1 known HMMs, we discuss how to build an optimal classifier
to determine, with minimal probability of error, which competing model has most likely
produced a given sequence of observations. The main issue when dealing with HMMs is
that the state cannot be directly observed but, instead, only the (possibly non-unique) output
associated with the state and/or the transition of the model can be observed. Apart from
describing how to optimally perform the classification task (in a way that minimizes the
probability of error), we analyze the classification scheme by characterizing the effectiveness
of the classifier in terms of a bound on the associated probability of error. We also analyze a
more challenging scenario where the observations are possibly erroneous.
The likelihood that a given observed sequence has been generated from a particular HMM can
be calculated as the sum of the probabilities of all possible state sequences that are consistent
with the sequence of observations. This can be done using an iterative algorithm similar to the
forward algorithm (Rabiner, 1989), which solves the evaluation problem in HMMs and is used
frequently in speech recognition applications (Jelinek, 1998), (Rabiner, 1989), (Poritz, 1988).
More specifically, given a model and an observed sequence, the evaluation problem consists
of computing the probability that the observed sequence was produced by the model. When
there are many competing models, these probabilities can be used to choose the model which
best matches the observations, in a way that minimizes the probability of error. The forward
algorithm is also used in pattern recognition applications (Fu, 1982), (Vidal et al., 2005) to
solve the syntax analysis or parsing problem, i.e., to recognize a pattern by classifying it to
the appropriate generating grammar, and in bioinformatics (Durbin et al., 1998), (Koski, 2001)
to evaluate whether a DNA sequence or a protein sequence belongs to a particular family of
sequences.
This chapter begins with an overview of optimal classification schemes for HMMs where the
goal is to minimize the probability of error of the classifier. Given a particular sequence of

1 We can easily generalize the discussion in this chapter to deal with classification of more than two
models, but choose to focus on the case of two models for clarity/brevity purposes.
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observations, these techniques can be used to choose the HMM that most likely generated the
sequence of observations and, in the process, also characterize the associated probability of
error (for the given sequence of observations). However, in order to measure the classification
capability of the classifier before making any observations, one needs to compute the a priori
probability that the classifier makes an incorrect decision for any of the possible sequences of
observations. Enumerating all possible sequences of a given length (in order to evaluate their
contribution to the probability of error) is prohibitively expensive for long sequences; thus,
we describe ways to avoid this computational complexity and obtain an upper bound on the
probability that the classifier makes an error without having to enumerate all possible output
sequences. Specifically, we present a constructive approach that bounds the probability of
error as a function of the observation step. We also discuss necessary and sufficient conditions
for this bound on the probability of error to go to zero as the number of observations increases.
After obtaining bounds on the probability of erroneous classification, we consider the
additional challenge that the observed sequence is corrupted, due to noise coming from sensor
malfunctions, communication limitations, or other adversarial conditions. For example,
depending on the underlying application, the information that the sensors provide may
be corrupted due to inaccurate measurements, limited resolution, or degraded sensor
performance (due to aging or hardware failures). We consider unreliable sensors that
may cause outputs to be deleted, inserted, substituted or transposed with certain known
probabilities. Under such sensor malfunctions, the length of the observed sequence will
generally not equal the length of the output sequence and, in fact, several output sequences
may correspond to a given observed sequence. Thus, one would need to first identify all
possible state sequences and the probabilities with which they agree with both the underlying
model and the observations (after allowing, of course, for sensor failures). In particular, if
symbols in the output sequence can be deleted, there may be an infinite number of output
sequences that agree with a given observed sequence, which makes the standard forward
algorithm inapplicable for classification. This inability of the standard forward algorithm can
be overcome via an iterative algorithm that allows us to efficiently compute the probability
that a certain model matches the observed sequence: each time a new observation is made,
the algorithm simply updates the information it keeps track of and outputs on demand the
probability that a given model has produced the sequence observed so far. The iterative
algorithm we describe relates to (and generalizes) iterative algorithms for the evaluation
problem in HMMs (Rabiner, 1989), the parsing problem in probabilistic automata (PA) (Fu,
1982), (Vidal et al., 2005), and the trellis-based decoding of variable length codes (VLC) (Bauer
and Hagenauer, 2000), (Guyader et al., 2001), all of which can be modified to deal with some
types of sensor failures but are not quite as general (or effective) as the iterative algorithm we
describe.
We motivate the study of the above problems (bounding the probability of classification error
and dealing with corrupted observations) using examples from the areas of failure diagnosis
and computational biology. For instance, the problem of failure diagnosis in systems that
can be modeled as finite state machines (FSMs) with known input statistics can be converted
to the problem of classification of HMMs (Athanasopoulou, 2007). FSMs form a particular
class of discrete event systems (DESs) that have discrete state spaces and whose evolution
is event-driven, i.e., only the occurrence of discrete events forces the systems to take state
transitions. Any large scale dynamic system, such as a computer system, a telecommunication
network, a sensor network, a manufacturing system, a chemical process or a semiconductor
manufacturing process, can be modeled as an FSM at some level of abstraction. In addition,
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network protocols that describe the rules and conditions for exchanging information in
distributed environments can also be modeled by FSMs. Given two known FSMs (one
corresponding to the fault-free version of the underlying system and the other corresponding
to a faulty version of the system) and an associated input distribution, a classifier (called
diagnoser in this case) can be used to determine which of the two competing models has
most likely produced a given sequence of observations. Work in this area by the authors has
appeared in (Athanasopoulou et al., 2010), (Athanasopoulou and Hadjicostis, 2008). HMMs
are also used in the area of computational biology to capture the behavior of DNA sequences;
as we will see via examples in this chapter, these models can then be used to perform
classification in order to characterize various properties of interest in DNA sequences.

2. Preliminaries and notation: FSMs, Markov chains, and hidden Markov models

A finite state machine (FSM) is a four-tuple (Q, X, δ, q0), where Q = {0, 1, 2, ..., |Q| − 1} is the
finite set of states; X is the finite set of inputs; δ is the state transition function; and q0 is the
initial state. The FSMs we consider here are event-driven and we use n to denote the time
epoch between the occurrence of the nth and (n + 1)st input. The state Q[n + 1] of the FSM at
time epoch n + 1 is specified by its state Q[n] at time epoch n and its input X[n + 1] via the
state transition function δ as Q[n + 1] = δ(Q[n],X[n + 1]). A finite state machine (FSM) with
outputs is described by a six-tuple (Q,X,Y, δ,λ, q0), where (Q,X, δ, q0) is an FSM; Y is the
finite set of outputs; and λ is the output function. The output Y[n + 1] is determined by the
state Q[n] and the input X[n + 1] via the output function, i.e., Y[n + 1] = λ(Q[n],X[n + 1]),
which maps a state and input pair to an output from the finite set of outputs Y.
We denote a time homogeneous Markov chain by (Q,Δ,π[0]), where Q = {0, 1, 2, ..., |Q| − 1}
is the finite set of states; π[0] is the initial state probability distribution vector; and Δ captures
the state transition probabilities, i.e., Δ(q, q′) = P(Q[n + 1] = q′ | Q[n] = q), for q, q′ ∈ Q.
If we denote the state transition probabilities by ajk = P{(Q[n + 1] = j) | (Q[n] =
k)}, the state transition matrix of the Markov chain associated with the given system is
A = (ajk)j,k=0,1,...,|Q|−1. (To keep the notation clean, the rows and columns of all matrices
are indexed starting from 0 and not 1.) The state transition matrix A captures how state
probabilities evolve in time via the evolution equation π[n + 1] = Aπ[n], for n = 0, 1, 2, . . ..
Here, π[n] is a |Q|-dimensional vector, whose jth entry denotes the probability that theMarkov
chain is in state j at time epoch n. In our development later on, we will find it useful to
define the notion of a time homogeneous Markov chain with inputs, which we denote by
(Q, X, Δ,π[0]); here, Q = {0, 1, 2, ..., |Q| − 1} is the finite set of states; X is the finite set of
inputs; π[0] is the initial state probability distribution vector; and Δ captures the state and
input transition probabilities, i.e., Δ(q, xi , q′) = P(Q[n + 1] = q′ | Q[n] = q, X[n + 1] = xi), for
q, q′ ∈ Q, xi ∈ X.
An HMM is described by a five-tuple (Q,Y,Δ,Λ, ρ[0]), where Q = {0, 1, 2, ..., |Q| − 1} is the
finite set of states; Y is the finite set of outputs; Δ captures the state transition probabilities;
Λ captures the output probabilities associated with transitions; and ρ[0] is the initial state
probability distribution vector. More specifically, for q, q′ ∈ Q and σ ∈ Y, the state transition
probabilities are given by Δ(q, q′) = P(Q[n + 1] = q′ | Q[n] = q) and the output probabilities
associated with transitions are given by Λ(q, σ, q′) = P(Q[n + 1] = q′,Y[n + 1] = σ | Q[n] =
q), where Λ denotes the output function that assigns a probability to the output σ associated
with the transition from state Q[n] to state Q[n + 1]. We define the |Q| × |Q| matrix Aσ,
associated with output σ ∈ Y of the HMM, as follows: the entry at the (j, k)th position of Aσ

captures the probability of a transition from state k to state j that produces output σ. Note that
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∑σ∈YAσ = A, i.e., the transitionmatrix whose (j, k)th entry denotes the probability of taking a
transition from state k to state j. The joint probability of the state at step n and the observation
sequence y[1], . . . , y[n] is captured by the vector ρ[n] where the entry ρ[n](j) denotes the
probability that the HMM is in state j at step n and the sequence yn

1 = y[1], . . . , y[n] has been
observed. More formally, ρ[n](j) = P(Q[n] = j,Yn

1 = yn
1 ) (note that ρ is not necessarily a

probability vector).

3. Posterior probability calculation with uncorrupted observations

In this section, we examine the simplest case where no sensor failures are present. It will
become apparent later that this case does not involve any complications, such as loops in
the trellis diagram, and the calculations can be easily performed iteratively by a forward-like
algorithm.
Given the observation sequence YL

1 = yL
1 =< y[1], y[2], ..., y[L] > and two candidate HMMs

S1 and S2 (together with their initial state probability distributions and their prior probabilities
P1 and P2 = 1− P1), the classifier that minimizes the probability of error needs to implement
the maximum a posteriori probability (MAP) rule by comparing P(S1 | yL

1 )
>
< P(S2 | yL

1 )⇒
P(yL

1 | S1)

P(yL
1 | S2)

>
<

P2
P1

, and deciding in favor of S1 (S2) if the left (right) quantity is larger.

To calculate the probability P(yL
1 | S) of the observed sequence given a particular model

S, we first capture the evolution of S as a function of time for a given observed sequence
by constructing the trellis diagram of S. The state sequences that agree with the observed
sequence (consistent sequences) are those that start from any valid initial state and end at any
final state while ensuring that the output at each step n matches the observed output y[n]. Due
to the Markovian property, the probability of a specific consistent state sequence can be easily
calculated as the product of the initial state probability and the state transition probabilities
at each time step. Thus, to calculate the probability P(yL

1 | S) we need to first identify all
consistent sequences and their probabilities and then sum up the total probability.
The computation of P(yL

1 | S) is not iterative in respect to the number of observation steps,
hence it is not amenable for online monitoring. To make the computation iterative we can use
a forward-like algorithm. For candidate HMM S, we can update ρS iteratively as

ρS[n + 1] = AS,y[n+1]ρS[n], n = 0, 1, ..., L− 1,

where ρS[0] is taken to be the probability distribution of the initial states for model S and
AS,y[n+1] is the matrix that describes the state transition probabilities under the output
observed at time epoch n + 1. If L is the last step, the probability that the observation
sequence was produced by FSM S is equal to the sum of the entries of ρS[L], i.e., P(yL

1 |
S) = ∑

|Q|−1
j=0 ρS[L](j). This iterative algorithm is the standard forward algorithm that is used

to solve the evaluation problem in HMMs.
Example 1.a: In this example we consider the finite state machine (FSM) S with known input
distribution shown on the left of Figure 1: S has four states Q = {0, 1, 2, 3}, three inputs X =
{x1, x2, x3}, and three outputs Y = {a, b, c}. Each transition is labeled as xi | σ, where xi ∈ X
denotes the input that drives the FSM and σ ∈ Y denotes the associated output produced by
the FSM. If we assign equal prior probabilities to the inputs, i.e., if each input has probability
1/3 of occurring, the resulting HMM is shown on the right of Figure 1: each transition in the
HMM is labeled as p | σ, where p denotes the probability of the transition and σ ∈ Y denotes
the output produced.
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Fig. 1. State transition diagram of FSM S of Example 1 (left) and its corresponding HMM
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Fig. 2. Trellis diagram corresponding to S of Example 1 for observation sequence
y41 =< abcb > (transition probabilities are not included for clarity).

Suppose that we monitor S for L = 4 steps and we observe the sequence y41 =< abcb >. The
corresponding trellis diagram is shown in Figure 2 (pairs of states that are associated with
zero transition probabilities are not connected in the diagram and transition probabilities are
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n ρT
S [n] P(yn

1 | S)

0 [ 0.2500 0.2500 0.2500 0.2500] 1
1 [ 0 0.1667 0 0.0833 ] 0.2500
2 [ 0 0.0556 0.0556 0 ] 0.1112
3 [ 0.0370 0.0185 0 0 ] 0.0555
4 [ 0 0 0.0062 0 ] 0.0062

Table 1. Iterative calculations for vector ρS for the sequence of observations y41 =< abcb >.

not included for clarity of presentation). Each state of the trellis diagram is identified by a
pair (m, j), where m = 0, 1, 2, 3, 4 denotes the observation step and j ∈ {0, 1, 2, 3} denotes the
state of S. For example, the probability of a transition from state (0, 0) to state (1, 3) producing
output a is 1/3. Assuming uniform initial distribution, the probability that the observations
were produced by S can be calculated iteratively and is given by P(y41 | S) = 0.0062. Note
that this probability is expected to go down as the number of observations increases. Table 1
shows the sequence of iterations in order to obtain the vector ρS[n] as observations are coming
in. �

Example 1.b:
As another example, we consider a problem from computational biology. Specifically, we
concentrate on identifying CpG islands in a DNA sequence, where the alphabet consists of
the four nucleotides A, C, G, T (Durbin et al., 1998). Regions that are characterized by higher
than usual concentration of CpG dinucleotides (more generally, higher concentration of C and
G nucleotides) are called CpG islands.2 It is important to be able to identify these regions
because they typically appear around the promoters or start regions of many genes (Fatemi
et al., 2005). Consider the following task: given a short stretch of genomic sequence, can we
decide whether it comes from a CpG island or not? For illustration purposes, we assume that
we are only capable of observing two output symbols, α and β, as follows: we observe the
symbol α when the true output is A or C and we observe the symbol β when the true output is
G or T (this could be used, for instance, to model situations where instruments are unable to
distinguish between specific pairs of nucleotides). We assume that we are given two HMMs,
CpG+ and CpG−, with known structure, which model respectively regions with and without
CpG islands. As shown in Figure 3, CpG+ and CpG− have four states Q = {A,C,G, T}, and
two outputs Y = {α, β}. We also assume (for simplicity) that the priors of the two models are
pCpG+ = pCpG− = 0.5.
Suppose that we observe the sequence y41 =< αβαβ > and our goal is to determine which
of the two HMMs (CpG+ or CpG−) has most likely generated the observed sequence.
According to the previously described iterative algorithm, we need to first define the
transition probability matrices for each symbol for each one of the two HMMs (ACpG+,α,
ACpG+,β, ACpG−α, ACpG−,β); for example, for HMM CpG+, we have

ACpG+,α =

⎡
⎢⎢⎢⎢⎣

A C G T
A 0.18 0.17 0.16 0.08
C 0.27 0.37 0.34 0.36
G 0 0 0 0
T 0 0 0 0

⎤
⎥⎥⎥⎥⎦

2 The formal definition of a CpG island is a region with at least 200 base pairs that has a GC percentage
that is greater than 50% and an observed/expected CpG ratio that is greater than 60 (Gardiner-Garden
and Frommer, 1987).
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Fig. 3. State transition diagram of the two HMMs used to identify regions with or without
CpG islands in Example 1.b: (a) CpG+ (left), and (b) CpG− (right).

n ρT
+[n] P(yn

1 | CpG+)

0 [ 0.2500 0.2500 0.2500 0.2500] 1
1 [ 0.1475 0.3350 0 0 ] 0.4825
2 [ 0 0 0.1539 0.0814 ] 0.2353
3 [ 0.0311 0.0816 0 0 ] 0.1127
4 [ 0 0 0.0354 0.0192 ] 0.0546

Table 2. Iterative calculations for posterior probabilities for the sequence of observations
y41 =< αβαβ > for the model CpG+.

Given our previous discussion, we can calculate

æ+[4] = ACpG+,β · ACpG+,α · ACpG+,β · ACpG+,α · ρCpG+[0]
æ−[4] = ACpG−,β · ACpG−,α · ACpG−,β · ACpG−,α · ρCpG−[0]

and obtain P(y41 | CpG+) = 0.0546 and P(y41 | CpG−) = 0.0445. We can now apply the MAP

rule
P(y41 | CpG+)

P(y41 | CpG−)
>
<

pCpG+

pCpG−
which reduces to

0.0546
0.0445

>
< 1, and decide in favor of CpG+

since the left quantity is larger. Tables 2 and 3 show the various values obtained for the vectors
ρ+ and ρ− (corresponding to CpG+ and CpG− respectively) during the iteration.
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n ρT−[n] P(yn
1 | CpG−)

0 [ 0.2500 0.2500 0.2500 0.2500] 1
1 [ 0.2625 0.2475 0 0 ] 0.51
2 [ 0 0 0.0959 0.1294 ] 0.2253
3 [ 0.0473 0.0550 0 0 ] 0.1023
4 [ 0 0 0.0181 0.0264 ] 0.0445

Table 3. Iterative calculations for posterior probabilities for the sequence of observations
y41 =< αβαβ > for the model CpG−.

4. Probability of error

In this section we focus on bounding the probability of classification error, i.e., the probability
that the classifier makes the incorrect decision.

4.1 Preliminaries
We start by conditioning on a given observation sequence yL

1 and we compute online the
conditional probability that the classifier makes an incorrect decision as follows:

P(error at L | yL
1 ) = P(decide S2 at L, S1 | yL

1 ) + P(decide S1 at L, S2 | yL
1 )

= P(decide S2 at L | S1, yL
1 ) · P(S1 | yL

1 )+
P(decide S1 at L | S2, yL

1 ) · P(S2 | yL
1 )

= min{P(S2 | yL
1 ), P(S1 | yL

1 )}.
Since both posteriors are already computed (for use in the MAP rule comparison), the
probability of error given the observation sequence yn

1 as a function of n can be easily
computed online along with the maximum likelihood decision. At each step, the classifier
chooses the model with the larger posterior and makes an error with probability equal to the
posterior of the other model (of course, the posteriors need to be normalized so that they sum
up to one).
Our goal is to find a measure of the classification capability of the classifier a priori, i.e., before
any observation is made. The probability of error at step L is given by

P(error at L) = ∑
yL
1

(
P(yL

1 ) ·min{P(S2 | yL
1 ), P(S1 | yL

1 )}
)
.

To perform such computation, we need to find each possible observation sequence yL
1 , along

with its probability of occurring, and use it to compute the posterior of each model conditioned
on this observation sequence. To avoid the possibly prohibitively high computational
complexity (especially for large L) we will focus on obtaining an easily computable upper
bound and then show that, under certain conditions on the underlying HMMs, this bound on
the probability of error decays exponentially to zero with the number of observation steps L.
A classifier that uses the MAP rule necessarily chooses model S1 (S2) if the observation
sequence cannot be produced by S2 (S1), with no risk of making an incorrect decision.
However, if the observation sequence can be produced by both models, the classifier chooses
the model with the highest posterior, thereby risking to make an incorrect decision. The bound
we obtain considers the worst case scenario where, when both models are consistent with the
observation sequence yL

1 (i.e., when P(Si | yL
1 ) > 0 for i = 1 and 2), the classifier is assumed

to always make the incorrect decision; specifically, one has
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P(error at L) = ∑
yL
1

min{P(S1 | yL
1 ), P(S2 | yL

1 )} · P(yL
1 )

= 1−∑
yL
1

max{P(S1 | yL
1 ), P(S2 | yL

1 )} · P(yL
1 )

= 1− ∑
yL
1 :P(Si|yL

1 )=0
for i=1 or 2

P(yL
1 )− ∑

yL
1 :P(Si|yL

1 )>0
for i=1 and 2

max{P(S1 | yL
1 ), P(S2 | yL

1 )} · P(yL
1 )

≤ 1− ∑
yL
1 :P(Si|yL

1 )=0
for i=1 or 2

P(yL
1 )−

1
2 ∑

yL
1 :P(Si|yL

1 )>0
for i=1 and 2

P(yL
1 )

= 1− ∑
yL
1 :P(Si|yL

1 )=0
for i=1 or 2

P(yL
1 )−

1
2

(
1− ∑

yL
1 :P(Si|yL

1 )=0
for i=1 or 2

P(yL
1 )
)

= 1
2

(
1− ∑

yL
1 :P(Si|yL

1 )=0
for i=1 or 2

P(yL
1 )
)

= 1
2

(
1− P1 ∑

yL
1 :S2
incons.

P(yL
1 | S1)− P2 ∑

yL
1 :S1
incons.

P(yL
1 | S2)

)
.

In the previous formulas we used the fact that, when both S1 and S2 are consistent with the
observations, then the maximum of their posteriors is greater than or equal to half.

4.2 Calculation of bound on probability of error
Initially, our objective is to capture the set of observation sequences that are consistent with S1
but not with S2 (or sequences that are consistent with S2 but not with S1), i.e., to capture the set
of output sequences that can be produced by S1 but not by S2 (or the other way around). Once
we have identified this set of output sequences, we need to find its probability of occurring.
First, we construct the Markov chain S12|1 (respectively MC S12|2) to help us compute the
bound on the probability that S2 (respectively S1) becomes inconsistent with the observations,
given that the actual model is S1 (respectively S2). In particular, we explain how to construct
MC S12|1 starting from HMMs S1 and S2 in the following five steps (a similar procedure can
be followed to construct MC S12|2).
Step 1. Construct FSMs S1ND and S2ND from HMMs S1 and S2 respectively.
The set of input sequences that SiND accepts is the set of output sequences that Si is capable
of producing (where i = 1, 2). Recall that HMM Si is denoted by (Qi,Y, Δi, Λi, ρi[0]) (without
loss of generality3 we assume that Y1 = Y2 = Y). Ignoring the transition probabilities of
HMM Si, we build the possibly nondeterministic FSM SiND which has the same set of states
as Si and its set of inputs is equal to the set of outputs of Si. The state transition functionality
of SiND is determined by the output functionality of Si which is captured by Λi (although the
probabilities are not important at this point). More formally, FSM SiND is denoted by SiND =
(QiND, XiND, δiND, qiND0), where QiND = Qi; XiND = Y; qiND0 = {j | ρi[0](j) > 0} (i.e.,
qiND0 includes all states of Si with nonzero initial probability); and δiND(qiND, σ) = {q′iND ∈
QiND | Λi(qiND, σ, q′iND) > 0}.
Step 2. Construct FSMs S1D and S2D from FSMs S1ND and S2ND respectively.
We can think of FSM SiD as an observer for Si because each state of SiD contains the set of

3 We can always redefine Y = Y1 ∪Y2 to be the output of both machines if Y1 and Y2 are different.
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Fig. 4. State transition diagrams of (i) HMM S1, (ii) FSM S1D , and (iii) FSM S1DNC of
Example 2.

states that Si may be in given the observation sequence. The number of states of SiD, i.e., the
deterministic version of SiND could be as high as 2|QiND |. Although this may raise complexity
issues, it is very common in practical scenarios for SiD to have roughly the same number
of states as SiND (Hopcroft et al., 2001). Following the procedure of subset construction
(Hopcroft et al., 2001) we use SiND to build the deterministic, equivalent machine SiD = (QiD,
XiD , δiD , qiD0), where QiD contains subsets of states in the set Qi (recall that QiND = Qi);
the set of inputs are the same as the set of inputs of SiND, i.e., XiD = Y (recall that Xi = Y);
qiD0 = qi0; and δiD is determined from SiND by the procedure of subset construction, i.e., for
QS ⊂ Qi and σ ∈ Y, δiD(QS, σ) = {k | ∃j ∈ QS, k ∈ δiND(j,σ)}.
Step 3. Construct FSM S2DNC from FSM S2ND.
Next, we append the inconsistent state NC to S2D to obtain FSM S2DNC. As mentioned earlier,
FSM S2D accepts all sequences that can be produced by S2. FSM S2DNC accepts not only the
sequences that can be produced by S2, but also all other sequences (that cannot be produced
by S2). In fact, all sequences that cannot be produced by S2 will lead S2DNC to its inconsistent
state NC. More specifically, S2DNC = (Q2DNC, X2DNC, δ2DNC, q2DNC0), where Q2DNC =
Q2D ∪ {NC}; X2DNC = Y; q2DNC0 = q2D0 and δ2DNC is given by δ2DNC(q2DNC, σ) =

{
δ2D(q2DNC, σ), if q2DNC 	= NC, δ2D(q2DNC, σ) 	= ∅,
NC, otherwise.

Step 4. Construct FSM S1D2DNC from FSMs S1D and S2DNC.
To capture the set of observations that can be produced by S1 but not by S2, we need
to build the product FSM S1D2DNC. FSM S1D2DNC accepts all sequences that can be
produced by S1; from all of these sequences, the ones that cannot be produced by S2 lead
S1D2DNC to a state of the form {q1D, NC}. More specifically, S1D2DNC = S1D × S2DNC, i.e.,
S1D2DNC = (Q1D2DNC, X1D2DNC , δ1D2DNC , q0,1D2DNC), where Q1D2DNC = Q1D × Q2DNC;
X1D2DNC = Y (recall that X1D = X2DNC = Y); q0,1D2DNC = q0,1D × q0,2DNC; and δ1D2DNC
is given by δ1D2DNC({q1D, q2DNC}, σ) = {δ1D(q1D, σ), δ2DNC(q2DNC, σ)}, σ ∈ Y. Note that
δ1D2DNC({q1D, q2DNC}, σ) is undefined if δ1D(q1D, σ) is undefined.
Step 5. Construct MC S12|1 from FSM S1D2DNC or from S1, S1D, and S2D.
To compute the probabilities of the sequences captured by S1D2DNC we construct the Markov
chain with inputs S12|1 = (Q12|1 X12|1, Δ12|1, ρ12|1[0]), where Q12|1 = Q1 × Q1D2DNC; X12|1 =
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Example 2.

Y; ρ12|1[0]({q1, q0,1D2DNC}) = ρ1[0](q1), for every q1 ∈ Q1 and zero otherwise;4 and Δ12|1
is given by Δ12|1 ({q1, q1D, q2DNC}, σ, {q′1, δ1D(q1D, σ), δ2DNC(q2DNC, σ)}) = Λ1(q1, σ, q′1)
for all σ ∈ Y such that δ1D(q1D, σ) 	= ∅. We group all states of the form {q1, q1D, NC} in
one new state and call it NC; we also add a self-loop at state NC with probability one.
Alternatively we can build MC S12|1 from S1, S1D, and S2D as follows: S12|1 = (Q12|1,
X12|1,Δ12|1, ρ12|1[0]), where Q12|1 = Q1 × Q1D × Q2D; X12|1 = Y; ρ12|1[0]({q1, q1D, q2D}) =

ρ1[0](q1), for every q1 ∈ Q1, q1D ∈ Q1D, and q2D ∈ Q2D; and Δ12|1 is given by
Δ12|1({q1, q1D, q2DNC}, σ, {q′1, δ1D(q1D , σ), δ2DNC(q2DNC, σ)}) = Λ1(q1, σ, q′1), for all σ ∈ Y
such that δ1D(q1D, σ) 	= ∅ and δ2D(q2D , σ) 	= ∅ or Δ12|1 ({q1, q1D, q2DNC}, σ, {q′1, δ1D(q1D, σ),
NC}) = Λ1(q1, σ, q′1), for all σ ∈ Y such that δ1D(q1D, σ) 	= ∅ and δ2D(q2D, σ) = ∅. (Note
that for all q2D and all σ we have δ1D(q1D, σ) 	= ∅.) As mentioned before, we group all states
of the form {q1, q1D, NC} in one new state and call it NC; then we add a self-loop at state NC
with probability one.
Notice that any path in S12|1 that ends up in state NC represents a sequence that can be
produced by S1 but not by S2; the probability of such path is easily computed using the
Markovian property. Recall that our objective is to calculate the probability that HMM S2
is inconsistent with the observations given that the observations are produced by S1 (i.e., we
would like to calculate ∑yL

1 :S2
incons.

P(yL
1 | S1)). Therefore, we are interested in the probability

of S12|1 being in the inconsistent state NC as a function of the observation step given by
P(S12|1 in state NC at L) = π12|1[L](NC), where π12|1[L](NC) denotes the entry of π12|1[L]
that captures the probability that S12|1 is in the inconsistent state NC at L. Note that
π12|1[L] = AL

12|1π12|1[0], where A12|1 is the matrix that captures the transition probabilities
for MC S12|1 and π12|1[0] = ρ12|1[0] (note that at this point the particular inputs associated
with a transition are not needed and are ignored — only the probabilities of these transitions
matter).

4 Abusing notation, we use ρ12|1[0]({q1, q1D2DNC}) to denote the entry of ρ12|1[0] that corresponds to
state {q1, q1D2DNC}; of course, ρ1[0](q1) denotes the entry of ρ1[0] that corresponds to state q1.
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Fig. 6. State transition diagram of MC S12|1 of Example 2.

Proposition 1: The probability of error as a function of the observation step is given by

P(error at L) ≤ 1
2

(
1− P1 · ∑

yL
1 :S2
incons.

P(yL
1 | S1)− P2 · ∑

yL
1 :S1
incons.

P(yL
1 | S2)

)

= 1
2 − 1

2 P1 · π12|1[L](NC)− 1
2 P2 · π12|2[L](NC),

where π12|1[L](NC) captures the probability of S12|1 being in state NC at step L, π12|2[L](NC)
captures the probability of S12|2 being in state NC at step L, and P1 and P2 denote the priors of
S1 and S2. �

Example 2: We consider two candidate HMMs S1 and S2 with Q1 = Q2 = {0, 1, 2}, Y1 =

Y2 = {a, b}, initial state {0}, and transition functionality, as shown in Figures 4.(i) and 5.(i),
where each transition is labeled by pi | σ, i.e., the probability of the transition and the output
it produces. Following the procedure of subset construction we construct the deterministic
FSMs S1D and S2D as shown in Figures 4.(ii) and 5.(ii), respectively (notice that we include
states {1} and {2} in the state transition diagram of S1D for completeness although they are
not reachable from the initial state {0}). Adding the inconsistent state for eachmachine we get
FSMs S1DNC and S2DNC as shown in Figures 4.(iii) and 5.(iii), respectively. Then, we construct
MCs S12|1 and S12|2 with state transition diagrams as shown in Figures 6 and 7, respectively.
For example, the sequence< a a b a > can be produced by S1 but not by S2 (hence, given that
this is the observation sequence, the probability that the classifier makes an incorrect decision
is zero). In fact, all sequences in S12|1 that end up in state NC can be produced by S1 but not
by S2. �

4.3 Properties of bound on probability of error
The inconsistent state NC in MC S12|1 is an absorbing state by construction. Therefore, the
probability that S12|1 is in state NC does not decrease as a function of the observation step; the
same property holds for S12|2. From Proposition 1 it is clear that the bound on the probability
of error is a nonincreasing function of the observation step.
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Fig. 7. State transition diagram of MC S12|2 of Example 2.

Proposition 2: The bound on the probability of error given by Proposition 1 is a nonincreasing
function of the number of observation steps. �

In fact, if MCs S12|1 and S12|2 have a single absorbing state each, i.e., state NC is the only
absorbing state in each model, then the bound goes to zero as the number of observation
steps increases. The expected number of steps to absorption, given that the initial state is the
0th state of S12|1, can be calculated using the fundamental matrix of the absorbing Markov
chain S12|1 (Kemeny et al., 1976). If AT12|1 is the substochastic transition matrix of S12|1 that
captures the transitions among all transient states (all but NC) then the fundamental matrix is
given by ∑∞

i=0AT12|1 i = (I − AT12|1)−1 and its (j, k)th entry captures the expected number
of transitions from state k to state j before absorption. The expected number of steps to
absorption, given that the initial state is state {0}, is equal to the sum of the elements of the
0th column of the fundamental matrix. In fact, the rate of convergence to absorption depends
on the largest eigenvalue of the substochastic matrix AT12|1 (because the rate of convergence
of matrix Am

T12|1 is captured by the rate of convergence of λm
12|1, where λ12|1 is the largest

eigenvalue of AT12|1 and m denotes the number of steps (Kemeny et al., 1976)).
Let us now consider the scenario where neither S12|1 nor S12|2 includes the inconsistent state
NC in their set of states. Then the bound on the probability of error will not go to zero; in
fact, it will always be equal to half, thereby providing us with no useful information. This
scenario corresponds to the case where all output sequences that can be produced by S1 can
also be produced by S2 and vice versa. For this to be true, S1 and S2 need to be equivalent,
i.e., generate the same regular language (i.e., the same set of output sequences). Of course,
although the set of output sequences is the same for both models, the probabilities associated
with an output sequence could be different for each model. However, the posteriors of the
candidate models in this casewould be strictly greater than zero for any observation sequence;
hence, the error in the MAP decision will always be nonzero. We can check whether S1 and
S2 are equivalent using standard approaches with complexity O((|Q1D|+ |Q2D|)2) (Hopcroft
et al., 2001). We can also easily check equivalence by using S1D2DNC and S1DNC2D which
we have already constructed: if the inconsistent state in either S1D2DNC or S1DNC2D (and
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Fig. 8. Plot of the bound on the probability of error (solid) and the empirical probability of
error obtained by simulation (dashed) in Example 2, both shown as functions of the
observation step.

consequently S12|1 or S12|2) can be reached starting from the initial state, then the two models
are not equivalent.
If MC S12|1 has no absorbing state and MC S12|2 has only the state NC as an absorbing state,

then the bound on the probability of error goes to the value P1
2 . This case corresponds to the

language generated by S1 being a subset of the language generated by S2, i.e., the set of output
sequences that can be produced by S1 can also be produced by S2. To check for this scenario,
we can check whether the inconsistent state in S1D2DNC is reachable from the initial state. We
formalize the above discussion in the following proposition.
Proposition 3: For two HMMs S1 and S2, the upper bound on the probability of error for the
classification decision

• tends to zero exponentially with the number of observation steps, if (and only if) each of
FSMs S1D2DNC and S1DNC2D has a unique absorbing state, namely the inconsistent state;

• tends to the value P1/2 exponentially with the number of observation steps, if FSM
S1D2DNC has no inconsistent state and FSM S1DNC2D has a unique absorbing state, i.e.,
the inconsistent state;

• tends to the value P2/2 exponentially with the number of observation steps, if FSM
S1D2DNC has no inconsistent state and FSM S1DNC2D has a unique absorbing state, i.e.,
the inconsistent state;

• is equal to 1/2, if (and only if) FSMs S1D2DNC and S1DNC2D have no inconsistent states. �

Example 2 (continued): As shown in Figures 6 and 7, each of S12|1 and S12|2 have NC as the
unique absorbing state. Thus, the bound on the probability of error goes to zero exponentially
with the observation time; this is evident in Figure 8 where we assume equal priors (i.e., P1 =
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Fig. 9. State transition diagram of (i) HMM S1 and (ii) HMM S3 of Example 3.

P2 = 0.5). After running simulations, half with the actual model being S1 and the other half
with the actual model being S2, we obtain the empirical probability of error given S1 (and
given S2) by recording the fraction of simulations for which the classifier incorrectly decided
S2 (and S1, respectively). The empirical probability of error as a function of the observation
step is shown in Figure 8. The expected time to absorption for S12|1 is calculated to be 6.8 steps
and the expected time to absorption for S12|2 is 6.3 steps; hence, for equal priors, the expected
number of steps for the bound on the probability of error to become zero is 6.55 steps. �

Example 3: Consider HMM S1 and HMM S3 shown in Figure 9, and assume equal priors.
Notice that any output sequence that can be produced by S3 can also be produced by S1; thus,
there is no inconsistent state in S13|3 and the probability ∑yL

1 :P(S1|yL
1 )=0 P(yL

1 | S3) is always
equal to zero. On the other hand, S13|3 has a unique absorbing inconsistent state. According
to the proposition, we expect the bound on the probability of error to go to P1/2 = 0.25. From
Figure 10 we see that, although the bound on the probability of error indeed goes to 0.25 (as
expected), the simulations show that the empirical probability of error goes to zero as the
number of steps increases; for this set of candidate models, the bound is not tight, even as the
number of observation steps goes to infinity. �

5. Posterior probability calculation with corrupted observations

So far, we have assumed that the output sequence of the HMM is correctly observed by
the classifier. Next, we consider the scenario where sensor failures may convert the output
sequence to a corrupted observed sequence.

5.1 Sensor failure model
The output sequence yL

1 =< y[1], y[2], ..., y[L] > produced by the system under classification
may become corrupted due to noise or sensor unreliability. When sensor failures are possible,
what is actually observed by the system, denoted by zLz

1 =< z[1], z[2], ..., z[Lz] >, may be
different from the output sequence. In fact, if sensor failures are allowed to insert and/or
delete outputs, the length of the observed sequence zLz

1 may be different from the length of
the output sequence (i.e., it could be that Lz 	= L). We consider sensor failures that may result
in the deletion, insertion, or substitution of output symbols, or the transposition of adjacent
output symbols. We assume that sensor failures are transient and occur independently at each
observation step with certain (known) probabilities that could depend on the observation step,
e.g., the probability of such transient errors could vary as a function of time. We also make
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Fig. 10. Plot of the bound on the probability of error (solid) and the empirical probability of
error obtained by simulation (dashed) in Example 3, both shown as functions of the
observation step.

the reasonable assumption that sensor failures are conditionally independent from the HMM
given the observation sequence.
If an output σ ∈ Y is deleted by the sensor, then we do not observe the output, i.e., the deletion
causes σ → ε, where ε denotes the empty label. Similarly, if an output σ ∈ Y is inserted by
the sensor, then we observe σ instead of ε, i.e., the insertion causes ε → σ. Also, if an output
σj ∈ Y is substituted by σk ∈ Y, then we observe σk, i.e., the substitution causes σj → σk.
Lastly, the corruption of subsequence < σjσk > to < σkσj > is referred to as a transposition
error.
To perform the posterior probability calculation, we construct the trellis diagram of S as
before but modify it to capture the sensor failures. Note that we call each column of the
trellis diagram a stage to reflect the notion of an observation step. Deletions appear in the
trellis diagram as vertical transitions within the same stage and insertions appear as one-step
forward transitions. A substitution appearing at a particular observation step results in a
change of the transition functionality of the HMM for that step. The transposition of two
adjacent outputs appears in the trellis diagram as an erroneous transition that spans two
columns.
Given the sensor failure model, we can assign probabilities to all types of errors on the
observed sequence. Since the probabilities of sensor failures are known and are (conditionally)
independent from the transition probabilities of the HMM, we can easily determine the
probabilities associated with transitions in the modified trellis diagram that accounts for
sensor failures. Due to space limitations, we focus on deletions which is the most challenging
case of sensor failures because they may produce vertical cycles in the trellis diagram; the
interested reader can find more details in (Athanasopoulou, 2007).
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We assume that a deletion dσ′ of output σ′ occurs with known probability pdσ′ [m + 1] at
observation step m + 1 when S is in a state fromwhich a transition that outputs σ′ is possible.
Let D = {dσ1 , dσ2 , ..., dσ|D| | σ1, σ2, ...,σ|D| ∈ Y} be the set of deletions and define a function out
to allow us to recover the corresponding output in the setY given a deletion, i.e., out(dσ′) = σ′.
When constructing the trellis diagram, we assign probabilities to the transitions as follows:

1. each forward (normal) transition from state (m, j) to state (m+ 1, k) associated with output
σ is assigned probability

(1− ∑
∀d

σ′∈D s.t.

δ(j,out(d
σ′)) 	=∅

pdσ′ [m]) · Aσ(k, j),

where (1 − ∑
∀d

σ′ ∈D s.t.

δ(j,out(d
σ′)) 	=∅

pdσ′ [m]) is the probability that no deletion (possible from state j)

occurs and whereAσ(k, j) is the probability of going from state j to state k while producing
output σ;

2. each vertical transition (corresponding to deletions) from state (m, j) to state (m, k) is
assigned probability

∑
∀d

σ′∈D s. t.

δ(j,out(d
σ′))=k

(pdσ′ [m] · Aσ′(k, j)).

Note that other ways of defining these probabilities (or obtaining them from a particular
sensor failure model) are possible, e.g., under different models of sensor failures. What is
important (and a challenge) here are not the specific values of these probabilities but the
structure of the trellis diagram (in particular the loops that are present).

0,0

0,1

0,3

0,2

2,0

2,1

2,3

2,2

3,0

3,1

3,3

3,2

4,0

4,1

4,3

4,2

1,0

1,1

1,3

1,2

Fig. 11. Trellis diagram corresponding to S of Example 1 with deletions due to sensor failures
(transition probabilities are not included for clarity).

Example 1 (continued): In S of Example 1 suppose that deletion of b may occur and that
the observed sequence is z41 =< abcb >. The output sequence yL

1 could be of any length;
examples of possible output sequences are < abbbcb >, < babcb >, and < babbcbbb >. The
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resulting trellis diagram is shown in Figure 11, where dashed arcs represent transitions due to
the deletion of b. In this example, we assume that the deletion probability pdb

is fixed for all
observation steps. The probabilities of transitions are not included in the figure for clarity, but
they can be computed as explained before the example. For instance, the (normal) transition
from state (0, 0) to state (1, 3) when symbol a is observed has probability Aa(3, 0), which is
equal to the probability that S took a transition from state 0 to state 3 and produced output a.
Similarly, the (erroneous) transition from state (0, 1) to state (0, 2) has probability pdb

· Ab(2, 1),
which is the probability that b was produced by S and then it was deleted by the sensors. �

5.2 Posterior probability calculation
The iterative algorithm described in Section 3 cannot be applied in the case of sensor
unreliability (see Figure 11) because the vertical arcs within a stage can possibly form loops (as
in our example) and be traversed any number of times (more loop traversals occur, of course,
with lower probability). Next, we establish some notation which will help us perform the
iteration.
We can view the trellis diagram for a given observed sequence zLz

1 as a probabilistic FSM H
with |QH | = (Lz + 1) · |Q| states and probabilities on transitions determined by the trellis
diagram. The transition probabilities do not generally satisfy the Markovian property and the
matrix AH that describes the transition probabilities of FSM H is not stochastic. We can easily
build H′ bymodifying H, so that the assigned transition probabilities produce aMarkov chain
and, in particular, an absorbing Markov chain. More specifically, we append |Q|+ 1 states as
described in the following two steps:

1. We add an extra stage at the end of the trellis diagram, i.e., we add |Q| states of the form
(Lz + 1, j) so that from each state of the form (Lz, j) there exists a transitionwith probability
one to state (Lz + 1, j), j ∈ {0, 1, 2, ..., |Q| − 1}; we also add a self-loop with probability one
at each state of the form (Lz + 1, j). We call each state of the form (Lz + 1, j) a consistent
state because H′ being in that state implies that S is consistent with the observed sequence
zLz
1 .

2. We add state qin to represent the inconsistent state, i.e., H is in state qin when the observed
sequence is not consistent with S. To achieve this, we add transitions from each state of
FSM H to the inconsistent state qin with probability such that the sum of the transition
probabilities leaving each state is equal to one; we also add a self-loop at state qin with
probability one.

The resulting Markov chain H′ has |QH ′ | = (Lz + 2) · |Q|+ 1 states. The only self-loops in
H′ with probability one are those in the consistent states (of the form (Lz + 1, j)) and in the
inconsistent state (qin). In fact, due to the particular structure of H′ (and given that there is
a nonzero probability to leave the vertical loop at each stage), the consistent and inconsistent
states are the only absorbing states, while the rest of the states are transient. Therefore, when
H′ reaches its stationary distribution, only the absorbing states will have nonzero probabilities
(summing up to one). We are interested in the stationary distribution of H′ so that we can
account for output sequences yL

1 of any length that correspond to the observed sequence zLz
1 ,

i.e., for L = Lz, Lz + 1, . . . ,∞. (Recall that without sensor failures we have L = Lz.)
More formally, we arrange the states of H′ in the order (0, 0), (0, 1), . . . , (0, |Q| −
1), (1, 0), (1, 1), . . . , (1, |Q| − 1), . . . , (Lz + 1, 0), (Lz + 1, 1), . . . , (Lz + 1, |Q| − 1), qin. Let πH ′ [0]
be a vector with |QH ′ | entries, each of which represents the initial probability of a
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corresponding state of H′. We are interested in the stationary probability distribution of H′
denoted by

πH ′ = lim
n→∞

πH ′ [n] = lim
n→∞

An
H ′ · πH ′ [0],

where the state transition matrix AH ′ of H′ is in its canonical form given by

AH ′ =

[ AH 0
R I

]
. (1)

Here AH captures the behavior of the transient states of H′, the (|Q| + 1) × |QH | matrix
R captures the transitions from the transient states to the absorbing states, 0 is a matrix
of appropriate dimensions with all zero entries, and I is the identity matrix of appropriate
dimensions. Note that since H′ is an absorbing Markov chain, the limit limn→∞An

H ′ exists
and it is given by

lim
n→∞

An
H ′ =

[
0 0

(I −AH)−1R I

]
, (2)

where (I −AH)
−1 is called the fundamental matrix (Kemeny et al., 1976).

The only nonzero entries of πH ′ are those that correspond to the consistent and inconsistent
states. In fact, the probability that H′ ends up in a consistent state is equal to the complement
of the probability that H′ ends up in the inconsistent state and it is equal to the probability of
the observed sequence zLz

1 given the FSM model S, i.e.,

P(zLz
1 | S) =

|QH|−1
∑

j=Lz·|Q|
πH ′ (j) = 1−πH ′ (|QH ′ |).

Note that the above approach for the posterior probability calculation is consistent with the
one obtained in (Athanasopoulou et al., 2010) using the notion of the observation FSM and its
composition with S.

5.3 Iterative posterior probability calculation with corrupted observations
In this section we exploit the structure of matrix AH ′ which captures the transition
probabilities of H′ to perform the posterior probability calculations in an efficient manner.
We first define the following submatrices which will be used to expressAH ′ .

• Matrices Bm,m+1, m = 0, 1, ..., Lz, capture the transitions from any state of H′ at stage
m to any state of H′ at stage m + 1. They can be obtained from AH ′ as Bm,m+1(k, j) =
AH ′ ((m + 1) · |Q|+ k,m · |Q|+ j), where k, j = 0, 1, ..., |Q| − 1.

• Matrices Bm, m = 0, 1, ..., Lz, capture the vertical transitions and account for deletions.
They can be obtained from AH ′ as Bm(k, j) = AH ′ (m · |Q|+ k,m · |Q| + j), where k, j =
0, 1, ..., |Q| − 1. (Note that if deletions occur at each observation step with the same
probability, then Bm = B, m = 0, 1, ..., Lz.)

• CT is a row vector with entries CT(j) = 1− ∑
|QH|
k=1 AH(k, j), for j = 1, 2, ..., |QH |, i.e., CT

ensures that the sum of each column of AH ′ is equal to 1.
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We should note here that an alternative way to compute the block matrices Bm,m+1 and Bm
directly, without the help of the modified trellis diagram, is by using the following equations:

Bm(k, j) = ∑
∀d

σ′∈D s.t.

δ(j,out(d
σ′))=k

(pdσ′ [m] · Aσ′(k, j)),

Bm,m+1(k, j) = (1− ∑
∀d

σ′ ∈D s.t.

δ(j,out(d
σ′)) 	=∅

pdσ′ [m]) · Az[m+1](k, j),

where k, j = 0, 1, ..., |Q| − 1 and pdσ′ [m],Aσ were defined earlier.
Using the above notation, we can decompose the matrix AH ′ in blocks and express it as

AH ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 0 0 ... 0 0 0 0
B0,1 B1 0 ... 0 0 0 0
0 B1,2 B2 ... 0 0 0 0
...

...
... ...

...
...

...
...

0 0 0 ... BLz−1 0 0 0
0 0 0 ... BLz−1,Lz BLz 0 0
0 0 0 ... 0 I − BLz I 0

CT 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Recall that the matrix AH ′ is in its canonical form (see (1)), where the submatrices AH and R
are given by

AH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B0 0 0 ... 0 0
B0,1 B1 0 ... 0 0
0 B1,2 B2 ... 0 0
...

...
... ...

...
...

0 0 0 ... BLz−1 0
0 0 0 ... BLz−1,Lz BLz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

R =

[
0 ... 0 I − BLz

CT

]
.

In the initial probability distribution vector πH ′ [0] the only nonzero entries are its first |Q|
entries, i.e., πH [0] = (ρ[0] 0 ... 0)T , where ρ[0] denotes the initial probability distribution of
S (i.e., it is a |Q|-dimensional vector, whose jth entry denotes the probability that S is initially
in state j). Recall that πH ′ denotes the stationary probability distribution vector of H′ and
has nonzero entries only in the absorbing states, i.e., its last |Q| + 1 states. Hence, given
the observed sequence zLz

1 , we can express πH ′ as πH ′ = (0 ... 0 ρ[Lz + 1] pin[Lz + 1])T ,
where ρ[Lz + 1] captures the probabilities of the consistent states and pin[Lz + 1] denotes the
probability of the inconsistent state. The following equations hold:

πH ′ = lim
n→∞

An
H ′ · πH ′ [0]

(0 ... 0 ρ[Lz + 1] pin[Lz + 1])T = lim
n→∞

An
H ′ · (ρ[0] ... 0)T

ρ[Lz + 1] = lim
n→∞

An
H ′(Lz + 2, 1) · ρ[0].

Therefore, in order to calculate the probability of the consistent states we only need the initial
distribution of S and the (Lz + 2, 1)st block of the matrix limn→∞An

H ′ .

104 Hidden Markov Models, Theory and Applications



Next, we argue that we can compute the limn→∞An
H(Lz + 2, 1) with much less complexity

than the standard computation in (2). For simplicity, we illustrate this for the case where the
observed sequence is of length 2, i.e., Lz = 2. The state transition matrix AH ′ is given by

AH ′ =

⎡
⎢⎢⎢⎢⎣

B0 0 0 0 0
B0,1 B1 0 0 0
0 B1,2 B2 0 0
0 0 I − B2 I 0

CT 0 1

⎤
⎥⎥⎥⎥⎦ .

We can compute by induction the matrixAH ′ raised to the power n and consequently find the
limit of An

H ′ (4, 1) as n tends to infinity as follows:

lim
n→∞

An
H(4, 1) = lim

n→∞ ∑
j1+j2+j3+j4=n−3

I j4 I Bj3
2 B1,2Bj2

1 B0,1Bj1
0

= (I + B2 + B2
2 + ...)B1,2(I + B1 + B2

1 + ...)B0,1(I + B0 + B2
0 + ...)

=

⎛
⎝ ∞

∑
j=0

Bj
2

⎞
⎠ B1,2

⎛
⎝ ∞

∑
j=0

Bj
1

⎞
⎠ B0,1

⎛
⎝ ∞

∑
j=0

Bj
0

⎞
⎠

= (I − B2)
−1B1,2(I − B1)

−1B0,1(I − B0)
−1 .

(The detailed proof is omitted due to space limitations; it can be found in (Athanasopoulou,
2007).)
As explained earlier, we are interested in the state probabilities of the consistent states, which
will be given by the entries of the vector ρ[3] = lim

n→∞
An

H(4, 1) ρ[0]. From the above equation,
we get

ρ[3] = ((I − B2)
−1B1,2(I − B1)

−1B0,1(I − B0)
−1)ρ[0].

To simplify notation let us define B′m,m+1 = (I − Bm+1)
−1Bm,m+1, m = 0, 1, 2. Hence, ρ[3] =

B′1,2B′0,1(I − B0)
−1ρ[0].

Generalizing the above computation for any number of observations Lz, the vector that
describes the probabilities of the consistent states given the observed sequence zLz

1 satisfies

ρ[Lz + 1] =

(
Lz−1
∏
i=0

B′m,m+1

)
(I − B0)

−1 ρ[0], (3)

where B′m,m+1 = (I − Bm+1)
−1Bm,m+1, m = 0, 1, ..., Lz.

By inspection of (3) we notice that the computation of ρ[Lz + 1] can be performed iteratively
as follows:

ρ[1] = B′0,1(I − B0)
−1 ρ[0],

ρ[m + 1] = B′m,m+1 ρ[m], m = 1, 2, ..., Lz,
(4)

where ρ[m + 1] represents the probability of consistent states given the observed sequence
zm
1 . The probability that the observed sequence zLz

1 was produced by the particular FSM S
is equal to the sum of the elements of the state probability distribution vector ρ[Lz + 1], i.e.,

P(zLz
1 | S) = ∑

|Q|−1
j=0 ρ[Lz + 1](j).

The above algorithm is described in pseudocode below.
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Algorithm
Input: Matrices {Bm}, {Bm,m+1}, where m = 0, 1, . . . , Lz; an observed (possibly corrupted)
output sequence zLz

1 = {z[1], z[2], ..., z[Lz]} and the initial probability distribution ρ[0].
1. Initialization. Let m = 0, z[m] = ∅,

compute B′0,1 = (I − B1)
−1B0,1,

compute ρ[1] = B′0,1(I − B0)
−1 ρ[0].

2. Let m = 1.
3. Consider the output z[m], do

compute B′m,m+1 = (I − Bm+1)
−1Bm,m+1,

compute ρ[m + 1] = B′m,m+1ρ[m].
4. m = m + 1.
5. If m = Lz + 1, Goto 6; else Goto 3.

6. Compute P(zLz
1 | S) =

|Q|−1
∑
j=0

ρ[Lz + 1](j). �

To gain some intuition regarding the iteration, let us consider for now the case of reliable
sensors. This case corresponds to matrices Bm in AH ′ being equal to zero, which means that
there are no vertical transitions (transitions within the same stage) in the trellis diagram. In
this case, iteration (4) becomes

ρ[m + 1] = Bm,m+1 ρ[m], m = 0, 1, . . . , Lz.

This latter equation is the same as the iterative equation that appeared in Section 3 for the case
of reliable sensors (wherewe denoted Bm,m+1 byAy[m+1]). Intuitively, every timewe get a new
observationwe update the current probability vector bymultiplying it with the state transition
matrix of S that corresponds to the new observation. With the above intuition at hand, we now
return to the case of sensor failures. Here, we also need to take into consideration the fact that
any number of vertical transitions may occur. Therefore, every time we get a new observation
z[m + 1], we multiply the current probability vector with the state transition matrix of S that
corresponds to the new observation (as before) and also with (I − Bm+1)

−1 = ∑∞
j=0 Bj

m+1
thereby taking into account the vertical transitions at stage m + 1.
The matrices Bm,m+1 have dimension |Q| × |Q|, while the matrix AH has dimension |QH | ×
|QH |, where |QH | = (Lz + 2) · |Q|. If we calculate πH without taking advantage of the
structure of AH , the computational complexity is proportional to O(((Lz + 2) · |Q|)3) =
O(L3

z · |Q|3). If we use the iterative approach instead, the computational complexity reduces
significantly to O((Lz + 2) · (|Q|2 + |Q|3)) = O(Lz · |Q|3) (each stage requires the inversion
of a new |Q| × |Q| matrix which has complexity O(|Q|3) and dominates the computational
complexity associated with that particular stage). If sensor failure probabilities remain
invariant at each stage, then matrix Bm at stage m only needs to be inverted once and the
complexity of the iterative approach is O((Lz + 2) · |Q|2 + |Q|3) = O(Lz · |Q|2 + |Q|3). In
addition to complexity gains, the iterative nature of the calculations allows us to monitor the
system under classification online and calculate the probability of the observed sequence at
each observation step by first updating the state probability vector and then summing up its
entries.
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5.4 Discussion
We discuss here how the presented iterative algorithm relates to other known algorithms.
As mentioned earlier, the techniques that we use relate to the evaluation problem in HMMs
or the parsing problem in probabilistic automata with vertical loops in the resulting trellis
diagram. The forward algorithm is used to evaluate the probability that a given sequence
of observations is produced by a certain HMM. To do that, the standard forward algorithm
uses the HMM to build a trellis diagram based on the given sequence of observations and
performs the likelihood calculation online. However, the standard forward algorithm cannot
handle the existence of vertical cycles in the trellis diagram. Ways around vertical cycles in
the trellis diagram have been suggested in speech recognition applications, where HMMs are
used to model speech patterns (Rabiner, 1989), (Ephraim and Merhav, 2002), (Jelinek, 1998),
(Poritz, 1988) and may include null transitions (i.e., the HMM may move from the current
state to the next state without producing any output (Jelinek, 1998), (Bahl and Jelinek, 1975)),
as well as in the area of pattern recognition, where one may have to deal with null transitions
when solving the parsing problem for a given probabilistic finite state automaton (Vidal et al.,
2005).
While in most HMM formulations one deals with state observations, several authors have
also studied the evaluation problem in HMMs with transition observations, including null
transitions (i.e., transitions with no outputs). For instance, the authors of (Bahl and Jelinek,
1975), (Bahl et al., 1983), (Jelinek, 1998), develop HMMs that capture the generation of
codewords in speech recognition applications via observations that are associated with
transitions rather than states. These HMMs also include null transitions, i.e., transitions that
change the state without producing outputs. To avoid loops in the resulting trellis diagram,
the authors of (Bahl and Jelinek, 1975) eliminate them via an appropriate modification of the
underlying HMM before constructing the trellis diagram. In (Vidal et al., 2005), an algorithm is
presented to solve the parsing problem in pattern recognition applications for the case where
null transitions exist in a probabilistic finite-state automaton (PFSA) model (as pointed out in
(Dupont et al., 2005), HMMs are equivalent to PFSAs with no final probabilities). The authors
evaluate recursively the probability that a sequence is produced by a λ-PFSA (i.e., a PFSA that
includes null transitions) and their approach can be shown, after some manipulation, to be a
special case of the algorithm we described here.
Also related to the described likelihood computation algorithm is the well-known
Viterbi algorithm (Forney, 1973), (Viterbi, 1967), which solves the related problem of
maximum-likelihood decoding of convolutional codes by choosing the most likely state
sequence based on a given sequence of observations. In fact, the Viterbi algorithm is a
dynamic programming algorithm amenable to online use with applications in various fields;
for example, in HMMs it finds the most likely (hidden) state sequence corresponding to the
observed output sequence (Rabiner, 1989). Note that, in contrast to the Viterbi algorithm, the
maximum likelihood approach in this work considers the total probability of all paths (rather
than the cost of the most likely path) which can be generated from the initial state(s) to the final
state(s). As a consequence of this requirement, the Viterbi algorithm (or variations of it) do
not obtain a solution for the problem considered here. However, it is worth pointing out that
the Viterbi algorithm has been frequently suggested as a suboptimal alternative for likelihood
evaluation in some applications (Rabiner, 1989). Also note that a modified Viterbi algorithm
was proposed in (Bouloutas et al., 1991) to identify the correct strings of data given an FSM
representation of a possibly erroneous output sequence; in (Hart and Bouloutas, 1993) the
same authors proposed a channel inversion algorithm for correcting symbol sequences that
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have been corrupted by errors (associated with costs) which can be described in terms of finite
state automata. The work in (Amengual and Vital, 1998) proposes an efficient implementation
of the Viterbi algorithm to perform error-correcting parsing using an FSM and an errormodel.
The Viterbi algorithm can handle the case where vertical cycles exist by unwrapping cycles so
that each state on the cycle is visited at most once (to avoid adding cost or decreasing the
probability of the path — recall that the Viterbi algorithm only searches for the most likely
path).
Before closing this discussion, it is worth pointing out that the techniques used to solve
our problem also relate to maximum a posteriori (MAP) decoding of variable length codes
(VLC). In MAP decoding of VLC, symbols that are generated by a source may give rise to
a different number of output bits and, given an observed bit sequence, one has to recover
the symbols that are transmitted according to the source codewords. The authors in (Bauer
and Hagenauer, 2000), (Guyader et al., 2001) constructed a two-dimensional (symbol and
bit) trellis diagram representation of the variable length coded data and then applied the
BCJR algorithm (Bahl et al., 1974) to do either symbol or bit decoding. This setup resembles
the setup described here when only a finite number of sensor failures exist in the observed
sequence (in such case, one can appropriately enlarge the underlying model since no vertical
cycles are present). In our formulation, however, deletions may cause vertical loops in
the associated trellis diagram resulting in an infinite number of possible output sequences
matching a given sequence of observations. As a consequence, the standard BCJR algorithm
is insufficient for solving our problem and the techniques that we describe are crucial in
obtaining the probabilities needed for our trellis-based analysis.
To summarize, the approach presented here is more general than the aforementioned
approaches because it can handle different kinds of loops at different stages of the trellis
diagram (loops in our setup are not introduced by null transitions in the underlyingmodel but
rather by errors in the observed sequence which can occur with time-varying probabilities).
Thus, the associated probabilities in the trellis diagram can be changing with time (which
cannot be handled as effectively using the techniques in (Vidal et al., 2005) or in (Bahl and
Jelinek, 1975)). The problem is that the modification of the underlying model so as to match
the requirements of these earlier approaches results in a quite complex HMM (in which the
evaluation problem can still benefit from the techniques we describe here). Therefore, the
attractive feature of the described iterative algorithm for likelihood calculation is that it can
handle time-varying and infinite number of sensor failures (or, equivalently, vertical cycles in
the trellis diagram) with reduced complexity.

6. Conclusions

In this chapter we considered the problem of optimal classification of HMMs in order
to minimize the probability of error. Given two candidate HMMs along with their prior
probabilities, a classifier that aims to minimize the probability of error (misclassification)
needs to determine which candidate model has most likely produced the observation
sequence of the system under classification. In order to find the a priori probability that
the classifier makes an incorrect decision as a function of the observation step, one could in
principle calculate all possible observation sequences (of that length), find their probabilities,
and determine their contribution to the probability of misclassification. Since the complexity
for calculating the exact probability of error can be prohibitively high, we described ways
to obtain an upper bound on this probability, as well as necessary and sufficient conditions
for the bound to go exponentially to zero as the number of observation steps increases.
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Additionally, we presented an iterative methodology to calculate the probability of a given
HMM under possibly erroneous observations. Our goal was to determine which of two
candidate HMMs has most likely produced the observed sequence under sensor failures
which can corrupt the observed sequence. Using the trellis diagram which includes all
possible sequences consistent with both the observations and the given HMMs, we described
an iterative algorithm that efficiently computes the total probability with which each HMM,
together with a combination of sensor failures, can generate the observed sequence. The
described algorithm can deal with vertical loops in the trellis diagrams which can be caused
by output deletions.
As examples we considered the classification of CpG islands in DNA sequences and a failure
diagnosis scenario where a system is classified as faulty or non-faulty depending on the
observation sequence. The described techniques can be easily extended to classification of
several hiddenMarkovmodels with applications in various fields such as document or image
classification, pattern recognition, and bioinformatics.
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1. Introduction

The dominant role of Hidden Markov Models (HMMs) in automatic speech recognition
(ASR) is not to be denied. At first, the HMMs were trained using the Maximum Likelihood
(ML) approach, using the Baum- Welch or Expectation Maximization algorithms (Rabiner,
1989). Then, discriminative training methods emerged, i.e. the Minimum Classification Error
(Sha & Saul, 2007; Siohan et al., 1998), the Conditional Maximum Likelihood, the Maximum
Mutual Information (Bahl et al., 1986), the Maximum Entropy (Kuo & Gao, 2006; Macherey
& Ney, 2003) and the Large Margin (LM) approach (Jiang et al., 2006; Sha & Saul, 2007).
These methods enabled an improvement of class separation (e.g. phonemes or words), but
generally suffered from computational complexity, slow convergence or ill conditioning of
computational algorithms.
In this work the Large Margin HMMs are used, but the training algorithm is based on the
iterative use of the well conditioned Baum - Welch algorithm, so there are no problems with
its convergence. Such a corrective HMM training yields an improvement of class separation,
which is tested on the speaker independent commands recognition and the spoken digits
recognition tasks.
This text is partially based on the publication (Dymarski & Wydra, 2008), but it contains new
concepts and not yet published results, e.g. the corrective training approach is extended
to simultaneous design of a whole set of HMMs (not only two), the selective optimization
concept is presented and the hierarchical command recognition system is designed and tested.

2. Discriminative training of the HMM

The Hidden Markov Model (HMM) consists of N states, described with observation
models. The n-dimensional observation vector contains a set of speech parameters e.g. the
mel-cepstrum coefficients. In the case of DHMM (Discrete HMM) the observation vector
exhibits M distinct values with probabilities delivered by the observation model. In the
case of CHMM (Continuous HMM) the observation model has a form of a probability
density function of speech parameters (e.g. gaussian or gaussian mixture pdf). The CHMMs
outperform the DHMMs in speech recognition tasks, because the DHMMs require clustering
of the observation vectors (e.g. using the k-means algorithm), which introduces quantization

 

Hierarchical Command Recognition Based 
on Large Margin Hidden Markov Models 

5



error. Therefore in this chapter we shall concentrate on the CHMM. In fact any HMM (also
the CHMM) is discrete in time domain, because only N distinct states are available - this is an
inherent disadvantage of this kind of models.
The commonly used maximum likelihood (ML) approach to a word recognition task may be
described as follows: Having a set of observations X (i.e. a set of n-dimensional vectors),
characterizing an unknown word, and having a set of HMMs {λi}, the HMMmaximizing the
probability (in case of DHMM) or the pdf (in case of CHMM) is chosen:

argmax
i

p(X|λi) (1)

Design of a HMM λi for the i-th word consists in calculating transition probabilities between
states, observation models for each state and initial probabilities for each state (if the initial
state is not set a priori). Usually the Baum-Welch (or Expectation Maximization - EM) method
is used (Rabiner, 1989), maximizing the likelihood

∏
k

p(Xk
i |λi) (2)

where Xk
i is the k-th element (instance) of the i-th observation set (describing e.g. the k-th

utterance of the i-th word, stored in a speech database). In practice, due to the extremely
small likelihood values, the logarithm of the probability (or the pdf), i.e. the log-likelihood is
maximized:

Loglik(Xi|λi) = ∑
k
log

[
p(Xk

i |λi)
]
= ∑

k
loglik(Xk

i |λi) (3)

where loglik(Xk
i |λi) = log

[
p(Xk

i |λi)
]
.

The above criterion yields the bestHMM (in amaximum likelihood sense) for a given database
Xi = {Xk

i }, but it does not take into consideration the discriminative properties of this model.
If for some other model λj, and for an observation set Xk

i (characterizing the k-th instance of
a i-th word) loglik(Xk

i |λj) > loglik(Xk
i |λi), then the recognition error appears. Therefore, a

difference
di,j(X

k
i ) = loglik(Xk

i |λi) − loglik(Xk
i |λj) (4)

contributes to a measure of separation of the classes i and j and should be considered in
training of the HMM λi (Jiang et al., 2006).
In most applications class i must be well separated not only from a single class j, but from any
class j = 1, 2, ..., Lw, j �= i, where Lw is a number od commands being recognized, e.g. 10 for
the recognition of spoken digits. Thus the separation of the k-th instance of an i-th word from
the other classes may be measured using the smallest difference di,j, j = 1, ..., Lw, j �= i:

di(X
k
i ) = min

j �=i
di,j(X

k
i )

di(X
k
i ) = loglik(Xk

i |λi) − max
j �=i

loglik(Xk
i |λj) (5)

In Fig.1 some instances of the same word i are analyzed: the log-likelihood for the proper
HMM λi and for the other HMMs λj, j �= i, the differences di,j and the minimum differences
di are shown.
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Fig. 1. Log-likelihoods loglik(Xk
i |λi), loglik(Xk

i |λj), j = 1, ..., 10, j �= i, differences di,j(X
k
i ) and

di(X
k
i ) for 10 utterances (instances) of the same, i-th word

The discriminative properties of the set of HMMs may be improved, by choosing the proper
parameters being the components of the observation vector. The mel-cepstrum parameters
with their first and second derivatives are usually chosen, but in (Dymarski & Wydra,
2008; Wydra, 2007) some improvement in isolated words recognition task is reported due to
replacement of the 3 last mel-cepstrum coefficients with 3 parameters characterizing voicing
of spoken phonemes. In (Hosseinzadeh & Krishnan, 2008) many spectral features were tested
with success in the speaker recognition task.
The structure of the HMMmay be adapted to the particular words or the other acoustic units,
in order to improve its discriminative properties. E.g. the number of states may be chosen
according to the number of phonemes in a word being modeled (see (Wydra, 2007), some
new results are also reported in this chapter). However care must be taken, because mixing
different HMM structures in one system may give poor results (e.g. ergodic HMMs yield
generally greater log-likelihood values despite of their rather poor discriminative properties).
The application of discriminative methods of the HMM design (Bahl et al., 1986; Chang &
Glass, 2009; Jiang et al., 2006; Kuo & Gao, 2006; Macherey & Ney, 2003; Schlueter et al., 1997;
Sha & Saul, 2007) is a straightforward approach to improve the class separation (described e.g.
with the di values). The following methods of discriminative training became popular:

• Minimum Classification Error approach (Sha & Saul, 2007; Siohan et al., 1998). The
criterion is a number of errors, i.e. number of instances generating negative values
of di(X

k
i ). This criterion is not a continuous function which causes problems with its

minimization. If it attains zero, then the design procedure is stopped, therefore it is
often replaced by a continuous sigmoidal function and gradient methods are used for its
minimization.

• Conditional Maximum Likelihood and Maximum Mutual Information approach (Bahl
et al., 1986). Unlike the ML approach, these methods consider the whole set of HMMs,
when updating the i-th HMM. In the Maximum Mutual Information approach the
probability of occurrence of words is also taken into consideration. Gradient optimization
methods are used, or the Extended Baum - Welch algorithm (Schlueter et al., 1997).

• Maximum Entropy (ME) (Kuo & Gao, 2006; Macherey & Ney, 2003). As described in
(Macherey & Ney, 2003), ME training looks for a model "consistent with constraints
derived from the training data while making as little assumptions as possible". Finally
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it leads to the log-linear models, somewhat different from the HMMs (observations
are associated with state transitions, not with states). The Generalized Iterative Scaling
algorithm, used for model design, is rather complex and slowly convergent.

• LargeMargin (LM) classificationmethods (Jiang et al., 2006; Sha & Saul, 2007), maximizing
the class separation, i.e. a margin, being a function of the distances di (5). Gradient
optimization methods may be used, but there are problems with their convergence (Jiang
et al., 2006; Sha & Saul, 2007). Unconstrained optimization may lead to the infinite value
of a margin while the log-likelihood Loglik(Xi|λi) tends to −∞. Therefore, constraints
are needed, which make the design process complex. If the margin is described with a
few critical observation sets (for which di attain the minimum values), the Support Vector
Machine may be used as a Large Margin Classifier. It is possible to construct such a
classifier as a HMM (Altun et al., 2003).

The Large Margin (LM) approach is the most promising one, however it suffers from a high
computational complexity of the HMM design algorithms. In this chapter it is shown, that
the margin may be increased by the iterative use of the Baum-Welch (or EM) algorithm - a
basic tool for the MaximumLikelihoodHMMdesign. Using the Iterative Localized Optimization
strategy (in each iteration only one HMM is modified) (Jiang et al., 2006) and corrective training
approach (only the margin forming sets of observations influence the HMM design) (Schlueter
et al., 1997) new algorithms are described in this work (see sect. 3 - some of them were
proposed before by the author and S.Wydra in (Dymarski & Wydra, 2008)). These algorithms
include:

• Optimization of all HMMs (obtained at first with the classical ML algorithm) using the
Large Margin (LM) training

• Selective LM training, i.e. modification of only these HMMs, which generate recognition
errors

• LM training of pairs: the HMM for the i-th word and the HMM for all but the i-th word
(the reference model, the world model)

• LM training of pairs: the HMM for the word "i" versus the HMM for the word "j".

• Hierarchical system:
- at the first stage the classical ML HMMs (or the HMMs after the selective training) are
used,
- at the second stage the words disambiguation is performed using the LM trained pairs:
the HMM for the word "i" versus the HMM for the word "j".

The best compromise between recognition quality and algorithm complexity is reached in the
hierarchical system. Hierarchical recognition structures were studied in the literature (Chang
& Glass, 2009; Fine et al., 2002; Gosztolya & Kocsor, 2005; Yang et al., 2002), but the structure
proposed in this chapter is somewhat different: it avoids merging of words, the first stage is
a complete recognition system and the disambiguation stage may be even removed from the
system. The first stage is optimized with respect to the HMM structure (the chain structure
with any path achieving the final state has better discriminative properties than Bakis and
ergodic structures), the number of states etc.
The pairwise training using a word model and a reference (world) model has been applied
in the problem of recognition of speakers having similar voice characteristics in the text
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dependent speaker verification system (Dymarski & Wydra, 2008). Similar corrective training
algorithm was used, yielding greater distance (margin) between the authorized person and
the impostors.
For a small number of words (e.g. the spoken digits recognition) a recognition systemmay be
based on pairs of LMHMMs, trained for recognition of only two words. The pairwise training
yields a good separation of classes and the final decision is made by voting (sect. 5)

3. Design of the Large Margin HMMs

A set of observations Xk
i (describing the k-th instance of the i-th word) and the HMM λi yield

the log-likelihood loglik(Xk
i |λi) = log

[
p(Xk

i |λi)
]
. The classical approach to HMM design

consists in maximizing the log-likelihood for the whole database representing a given class i,
i.e. maximizing of Loglik(Xi|λi) = ∑k loglik(Xk

i |λi) (3). In Fig.1 this yields a maximum value
of the integral of the upper curve without considering the lower ones (values of loglik(Xk

i |λj)
are not considered in the design process).
The measure of separation of the class i from the other classes j = 1, 2, ..., Lw, j �= i may be
defined as a function of di(X

k
i ). E.g. the sum

Di(Xi) = ∑
k

di(X
k
i ) (6)

may be used as a class separation measure. In Fig.1 it represents the area between the upper
curve (loglik(Xk

i |λi)) and a solid line representing maxj �=i loglik(Xk
i |λj). Such a measure may

be used as a criterion for HMM design, but it must be considered, that increasing of the
di(X

k
i ) having already large values has no sense, because these instances do not contribute

to recognition errors. In order to get rid of recognition errors negative values of di(X
k
i ) should

be eliminated. This suggests that a proper class separation measure should depend only on
these negative values. However, for small databases it is quite easy to eliminate errors, but it
is no guarantee that errors will not appear for instances not included in a database.
Therefore, in order to obtain a proper separation measure, not only negative values of di(X

k
i )

should be considered, but also small positive values. These values correspond to a critical
set (or a support vector set (Jiang et al., 2006; Vapnik, 1998)) and define a margin between
the class i and the other classes. By maximizing the margin for a given database, the number
of errors outside of the database is reduced (Jiang et al., 2006). As it is shown in (Vapnik,
1998), the greater the margin, the smaller the VC-dimension of the classifier, and the better its
performance outside of a training set. The margin may be defined as a mean distance for the
instances belonging to the critical set:

Mi(Xi) =
1
si

∑
k∈Si

di(X
k
i ) (7)

where Si- critical set, si- number of elements in the critical set. Here a critical set is defined as
10% of instances, yielding the smallest values of di(X

k
i ).

In this work a Large Margin HMM training algorithm is proposed, based on an iterative
application of the Baum-Welch procedure. It is partially based on suggestions appearing
in (Jiang et al., 2006) and (Schlueter et al., 1997). As in (Jiang et al., 2006), only one HMM
is optimized in a single iteration and the remaining ones are left unchanged (the Iterative
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Fig. 2. The critical set of instances of the i-th word, the margin Mi and the minimum distance
di,min

Localized Optimization approach). As in (Schlueter et al., 1997), the corrective training is used:
the erroneously recognized elements are used to re-design of the HMM at each stage. The
corrective training approach has been modified in this work: the whole database is used for
HMMdesign, but the critical set has greater influence on the design process. To attain this, the
critical set, re-defined in each iteration, is appended to the database. Thus the speech database
is growing during the HMM design process, because the critical instances are duplicated and
added to it.
The generic form of a proposed LM training algorithm may be described as follows:

1. Using the classical ML approach (Baum-Welch algorithm) calculate the initial HMMs for
all Lw words, i.e. for the database Xi = {Xk

i } calculate parameters of the HMM λi.

2. For each word i = 1, . . . , Lw:
• For each element of the database {Xk

i } (i.e. the k-th instance of the i-th word) calculate
its distances to the other words di,j(X

k
i ), j = 1, . . . , Lw, j �= i and the measure of

separation di(X
k
i )

• Define a critical set Si and append the critical set to the database Xi = {Xk
i }

• Recalculate the HMM λi using the Baum-Welch algorithm and the augmented database
Xi = {Xk

i }
3. Check the stopping condition (e.g. the number of iterations). If it is not fulfilled, go to the

step 2

Using the above algorithm, Lw models are modified consecutively. Several variants may be
considered, which have been mentioned in the previous section:
- In the selective training, only selected HMMs are updated (e.g. only one HMM, generating
most of the recognition errors).
- In the pairwise training, two HMMs are designed in the same time. Each iteration consists
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of two stages: firstly λi is modified and λj left unchanged, then λj is modified and λi left
unchanged. The algorithm uses two databases {Xk

i } and {Xk
j }. Note that in this case di = di,j.

In the word disambiguation stage of the hierarchical recognition system, both HMMs (λi and
λj) describe the phonetically similar words.
- In the pairwise training using the reference (world) model the first database {Xk

i } represents
the i-th word and the second database {Xk

j } - all but the i-th word. In this notation j means
"not i" so it will be replaced with ī. During the recognition phase, the differences

di,ī(X
k
i ) = loglik(Xk

i |λi) − loglik(Xk
i |λī) (8)

are used as a criterion. The model λī is used as a reference model for the i-th word. This
approach has been used in the speaker recognition/verification task (Dymarski & Wydra,
2008).

4. Large Margin HMMs in command recognition

4.1 The ASR system based on the ML HMMs
The speaker independent ASR system, described in (Dymarski & Wydra, 2008),(Wydra,
2007), recognizes 20 robot controlling commands. The database (developed at the Military
University of Technology, Warsaw) consisted of 143 instances of each command, uttered by
16 speakers: 90 instances were used for HMM design and 53 for testing. The content has
been reviewed and the instances which have been damaged by the Voice Activity Detector
were removed (e.g. tar which is a trimmed version od the word start). Therefore the results
obtained using the classical (ML) HMM design are better than those reported in (Dymarski &
Wydra, 2008; Wydra, 2007). As a simulation tool, the Murphy’s Toolbox (Murphy, 2005) was
used with modified procedures forcing the end of any path in a predefined state.
The Large Margin HMM design algorithms, proposed in previous section, start from the
classical models obtained using the Maximum Likelihood (ML) approach. Therefore these
classical models have been optimized, taking into consideration their structure, number of
states, observation model, etc. If the ergodic or Bakis structure is used (the Bakis structure
enables any transition "from the left to the right"), then e.g. the word pje~ts’ (in phonetic
SAMPA transcription (Sampa, n.d.)) is very often taken for dz’evje~ts’. In the chain structure
(transitions "from the left to the right" without "jumps") this error appears very seldom. This
conclusion is confirmed in Table 1: the mean margin increases for the chain structure. For
the proper recognition of e.g. the words os’ - os’em it is important that each state is visited
(transitions "from the left to the right" without "jumps" and the final state being the right hand
state) - Fig.3.
The number of states N should depend on the number of phonemes L f in a word (Wydra,
2007), the choice N = L f + 2 seems to be reasonable (Table 1).
The observation vector consisted of the energy, 10 mel-cepstrum coefficients and 3 coefficients
characterizing voicing of speech (see (Wydra, 2007) for details). With the first and second
derivatives there are 42 parameters, modeled with the gaussian pdf. The Gaussian Mixture
Models were tested, but the results for the test instances were not better (about 3% of
errors). The observed decrease of generalization ability may be due to the increase of HMM
complexity, which influences its VC-dimension (Vapnik, 1998).
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Fig. 3. Problems in recognizing pairs dz′evje ∼ ts′ - pje ∼ ts′ and os′em - os′ - (Dymarski &
Wydra, 2008)

Thus, a good recognition system may be obtained using a chain HMM with the number of
states N = L f + 2 and gaussian observation models. Any path through the HMM must start
in the left hand state and achieve the right hand state.

structure nr of states err % Margin err % Margin
base base test test

ergodic L f + 2 0.05 266 2.55* 141
Bakis L f + 2 0 259 2.74 138

Bakis-end L f + 2 0 250 3.20 122
chain L f + 2 0.05 298 0.94 180

chain-end L f + 2 0.05 301 0.66 192
chain-end L f + 1 0.05 259 1.32 166
chain-end L f + 3 0.05 311 0.75 200
chain-end L f + 4 0.05 372 1.04 216

* confidence interval ±0.3 at 70% confidence for results ≈ 1%

Table 1. ML training: comparison of HMM structures (L f - number of phonemes in a word,
chain-end - chain structure with any state visited, Margin - the mean margin for 20 words,
base - instances used for HMM design, test - instances used for testing)

4.2 Large Margin HMMs obtained by corrective and selective training
Further improvement of the class separation is obtained by using the Large Margin HMM
design algorithms described in sect. 3. At first, the corrective training of all the 20 HMMs
was tested. In consecutive iterations a constant increase of the margin is observed for the base
instances (Fig.4). One recognition error (0.05% in Tab.1 for a chain-end structure) disappeared
in the first iteration. However, the margin for the test instances increases very slowly and
the error rate oscillates between 0.66% and 1.04%. This may be explained as follows: All the
models are jointly optimized and maximization of the margin of the i-th word influences a
large set of distances dl,i(X

k
l ). Some of them decrease, which may introduce new errors.

Better results may be obtained if only some of the HMMs are optimized - the selected ones,
which exhibit errors or are characterized by a small margin. E.g. in the recognition system
based on the "chain-end" HMM models (Tab.1, in bold) all the errors (7 for the test instances)
were caused by the HMMs of the words start and stop. Note the negative margins in Tab.2 for
these words: -19 and -95. After 8 iterations of the corrective training algorithm, involving only
the HMMdescribing the word start therewere only 5 errors, and after 1 iteration involving the
HMMdescribing the word stop the number of errors dropped to 4 (0.38%). The corresponding
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Fig. 4. Corrective training: mean margin for 20 words for the database instances and the test
instances versus number of iterations

margins increased, but remained negative (-18 and -28). Thus the selective LM training has
better generalization ability than the corrective LM training of all the HMMs. It is to be noted
that the selective training improves the margins for the chosenHMMs (in this case two HMMs
of the words start and stop), but does not change much the margins of the remaining HMMs
(Tab.2).

4.3 Hierarchical ASR system based on the Large Margin HMMs
Further improvement is possible, if the phonetically similar words are passed to the second
stage of the recognition system, i.e. a disambiguation stage. In this case pairs of models are
trained, using the LM corrective training algorithm described in section 3.
This version of the corrective training algorithm has a "complementary" character, two HMMs
(representing e.g. phonetically similar words i and j) are designed in the same time. Each
iteration consists of two stages: first λi,j (HMM of the word i yielding the maximum distance
to the word j) is modified and λj,i left unchanged, then λj,i is modified and λi,j left unchanged.
The algorithm uses two databases {Xk

i } and {Xk
j }. The following steps are performed Niter

times:

• For the database {Xk
i } calculate parameters of the HMM λi,j using the Baum-Welch

algorithm.

• For each element of the database {Xk
i } calculate a distance di,j(X

k
i ), then define a critical set

Si (instances of the word i exhibiting small distances di,j) and append the critical set to the
database.

• For the database {Xk
j } calculate parameters of the HMM λj,i using the Baum-Welch

algorithm.

• For each element of the database {Xk
j } calculate a distance dj,i(X

k
j ), then define a critical set

Sj and append the critical set to the database.
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word ML LMs LMh ML LMs LMh
(SAMPA) base base base test test test

zero 360 360 360 150 150 150
jeden 356 356 356 206 206 206
dva 161 159 169 23 23 47
tSI 241 241 241 144 144 144

tSterI 271 271 271 93 93 93
pje ∼ ts′ 169 169 169 67 67 67
Ses′ts′ 568 568 568 632 632 632
s′edem 311 311 311 165 165 165
os′em 804 805 805 752 752 752

dz′evje ∼ ts′ 361 361 361 287 287 287
xvItak 468 451 451 347 347 347
duw 307 305 305 228 224 224
gura 241 247 247 161 161 161
levo 248 248 248 179 179 179
os′ 83 118 118 91 89 89

pravo 289 289 289 227 218 218
pus′ts′ 203 205 205 123 125 125
start 102 211 215 -19 -18 16
stop 142 184 198 -95 -28 33
zwap 320 316 364 76 76 123

mean value 301 309 313 192 195 203

Table 2. Margins for 20 commands: ML- training using the Baum-Welch algorithm, LMs-
selective training of the LM HMMs, LMh- hierarchical system, base - instances used for
HMM design, test - instances used for testing)

This approach has several advantages:
- For each pair different HMM structure and different parameters (number of states,
observation model) may be used,
- The loglik values may be modified using offset values, chosen for each pair. If the positive
offset oi,j is added to any loglik obtained with the HMM λi,j, then the distance di,j increases
and dj,i decreases (4). A proper choice of oi,j may force any distance to be positive, which
indicates lack of recognition errors.
In Figures 5 and 6 a problem of disambiguation of the pair start and stop is presented.
Before the corrective training both ML HMMs yield some negative distances, i.e. errors are
inevitable (Fig.5). After the optimization of HMM parameters (chain-end structure, 6 states
for the λstart,stop and 4 states for the λstop,start, observation modeling using the gaussian pdf
with a diagonal covariance matrix), application of LM discriminative training and the offset
ostop,start = 85 the distances became positive and errors disappeared (Fig.6).
The problem remains, which words should be selected for the second (disambiguation) stage
of the recognition algorithm. The phonetic similarity may be used as a criterion (e.g. a
pair start and stop) or the distances di,j for the base instances used to HMM design may
be considered (negative and small positive distances suggest passing to the disambiguation
stage). Finally, the most frequent recognition errors may be noted (e.g. users of the spoken
digits recognition system may complain that a digit 5 (pje ∼ ts′) is frequently recognized as 9
(dz′evje ∼ ts′)). For the 20 commands recognition system the following structure is adopted:
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Fig. 5. Left side: distances dstop,start (in ascending order) for the test instances of the word
stop, Right side: distances dstart,stop for the test instances of the word start, ML HMM
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Fig. 6. Left side: distances dstop,start (in ascending order) for the test instances of the word
stop, Right side: distances dstart,stop for the test instances of the word start, LM HMM

1. First stage: For a given observation set X, representing an unknown spoken command,
make a preliminary decision prelim yielding maximum log-likelihood:

prelim = argmax
i

loglik(X|λi)

where {λi} - HMMs used at the first stage of the recognition system.

2. Second stage: Set the final decision f inal equal to the preliminary decision, except of the
following cases:
• If prelim = start calculate the distance

dstop,start(X) = loglik(X|λstop,start) + ostop,start−
[
loglik(X|λstart,stop) + ostart,stop

]

If dstop,start(X) > 0 set f inal = stop.
• If prelim = stop calculate dstart,stop(X). If dstart,stop(X) > 0 set f inal = start.
• If prelim = zero calculate dstart,zero(X). If dstart,zero(X) > 0 set f inal = start.
• If prelim = zwap calculate ddva,zwap(X). If ddva,zwap(X) > 0 set f inal = dva.
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• If prelim = dva calculate dzwap,dva(X). If dzwap,dva(X) > 0 set f inal = zwap.
• If prelim = tSterI calculate dstop,tSter I(X). If dstop,tSter I(X) > 0 set f inal = stop.
• If prelim = pravo calculate dstart,pravo(X). If dstart,pravo(X) > 0 set f inal = start.

At the first stage of the proposed hierarchical system the HMMs obtained with selective
training algorithm are used (see subsection 4.2). At this stage there are only 4 errors: (stop
is taken for start and vice versa, start is taken for zero), but there are many small positive
distances (e.g. concerning the words dva and zwap). At the disambiguation stage all errors
disappeared and margins of the critical words increased (Tab.2). Note the positive margins
for the test instances of the words start and stop, 16 and 33 correspondingly.
The probability of error is reduced at the disambiguation stage, because of better
discriminative properties of complementary pairs of HMMs. At the first stage the distances
(4)

di,j(X
k
i ) = loglik(Xk

i |λi) − loglik(Xk
i |λj)

are generally smaller than the distances used at the disambiguation stage:

di,j(X
k
i ) = loglik(Xk

i |λi,j) + oi,j −
[
loglik(Xk

i |λj,i) + oj,i

]
(9)

Thus the corresponding margins increase and the probability of error drops.

5. Recognition of spoken digits using pairs of Large Margin HMMs

It has been observed (subsection 4.3) that pairs of LM HMMs λi,j and λj,i exhibit better
discriminative properties than the whole system, consisting of the LM HMMs λi, i =
1, . . . , Lw. Obviously, it is easier to solve the discrimination problem for two classes than for
Lw > 2 classes. Discriminative training exploits differences of corresponding classes, therefore
better results may be expected in solving the problem "is the observed word an instance of the
spoken digit 5 or 9?" than solving the problem "is it 5 or any other spoken digit?". Thus, having
Lw classes, it would be interesting to decompose the discrimination task to a series of binary
discriminations. The number of these elementary tasks equals Lw (Lw−1)

2 and for each task a
pair of HMMs is needed. Generally this approach is computationally too expensive, but for
small number of classes it is feasible.
A good example is a system for spoken digits recognition, which may be decomposed to 45
binary discrimination tasks. The same database was used (143 instances of each command,
uttered by 16 speakers: 90 instances for HMM design and 53 for testing). The observation
vector consisted of the energy and 13 mel-cepstrum coefficients. With the first and second
derivatives there are 42 parameters, modeled with the gaussian pdf. As before, the chain
HMMs with the number of states N = L f + 2 were used, with any path starting in the left
hand state and achieving the right hand state.
At first, the classic ML HMMs λi, i = 0, . . . , 9 were designed, using the Baum-Welch
algorithm (the HMM λi represents the spoken digit i). Results (margins for the spoken digits)
are given in Tab.3. Note the small values (48) for the test instances of the digits 4 (tSterI) and
5 (pje ∼ ts′). Indeed, there was an error (4 was taken for 0) and a series of small positive
distances for digit 5 (usually “menaced” by the digit 9). This may be also observed in Fig.7
(note the negative distance for one of the test instances of the digit 4 and the ML HMM)
and in Fig.9 (note a series of small positive distances for instances of the digit 5). In Fig.8
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Fig. 7. Left side: distances d4 = minj �=4(d4,j) for the database instances of the spoken digit 4
(tSterI), right side: the same for the test instances, ML- maximum likelihood HMMs, LM -
large margin HMMs

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9
menaces for "tSterI"

s
p

o
k
e

n
d

ig
it
s

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9
menaces for "tSterI"

s
p
o
k
e
n

d
ig

it
s

Fig. 8. Left side: competing words generating the minimum distances d4 = minj �=4(d4,j) for
the database instances of the spoken digit 4 (tSterI), right side: the same for the test
instances, only for the maximum likelihood HMMs

the "menacing" digits are displayed for instances of the digit 4 - one can see that the small
distances are due to the HMM of the word zero (instances on the x-axis are reordered as in the
Fig.7). The second example concerns the digits 5 and 9 (Fig.11)- due to the phonetic similarity
the digit 5 is usually menaced by 9 and vice versa.
In order to solve a problem of small and negative distances, pairs of the Large Margin HMMs
λi,j and λj,i were designed, using the corrective training described in subsection 4.3. The
problem remains, how to combine the results of 45 binary discriminations to make a final
decision. For an observation set X representing an unknown digit, the binary discriminations
are performed, yielding 45 distances (see equation 9):

di,j(X) = loglik(X|λi,j) + oi,j −
[
loglik(X|λj,i) + oj,i

]
(10)

These distances are stored in a 10× 10 array D with an empty diagonal and dj,i(X) = −di,j(X).
Values stored in the i-th row correspond to the hypothesis that the observation set X represents
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Fig. 9. Left side: distances d5 = minj �=5(d5,j) for the database instances of the spoken digit 5
(pje ∼ ts′), right side: the same for the test instances, ML- maximum likelihood HMMs, LM -
large margin HMMs
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Fig. 10. Left side: distances d9 = minj �=9(d9,j) for the database instances of the spoken digit 9
(dz′evje ∼ ts′), right side: the same for the test instances, ML- maximum likelihood HMMs,
LM - large margin HMMs

the digit i. The number of positive distances in this rowmay be regarded as a number of votes
for the digit i. This number varies from 0 to 9. An example is shown in Fig.12: the numbers
of positive votes in the upper row (i = 0) are displayed for instances of the spoken digit 4
(X = Xk

4) and the numbers of positive votes in the row i = 4 are displayed for instances of
the spoken digit 0 (X = Xk

0). Note that the number of positive votes is variable and never
attains the maximum value equal to 9. Different results are obtained for a pair of phonetically
similar words 5 (pje ∼ ts′) and 9 (dz′evje ∼ ts′). Here (Fig.13) the number of positive votes
equals 8 in most cases, but never attains 9. The maximum number of 9 votes is obtained only
in the row i = 5 for instances of the word 5 (X = Xk

5) and in the row i = 9 for instances of
the word 9 (X = Xk

9). The number of votes suggests the final decision. Problem may occur, if
the maximum number of positive votes (e.g. 8) is obtained in two or more rows. In this case
a "tie-break" algorithm may be used, e.g. taking into consideration the sum of entries in these
rows. This algorithm, however, was not necessary: in any case the proper decision was made
using the maximum number of positive votes. Note also a substantial increase of the margin
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Fig. 11. Left side: competing words generating the minimum distances d5 = minj �=5(d5,j) for
the database instances of the spoken digit 5 (pje ∼ ts′), right side: the same for the spoken
digit 9 (dz′evje ∼ ts′), only for the maximum likelihood HMMs

calculated for the database instances and an increase of the previously smallest margins for
digits 4 and 5 (Tab.3). The same observation stems from Fig.7: note a substantial increase of
the distances for the database instances and lack of errors (positive distances) for the digit 4.
The proper choice of the offset value yields similar margins for the digits 5 and 9 (compare
the results for LM HMMs in Fig.9 and Fig.10). In general, recognition system based on pairs
of the LM HMMs yields greater distances and margins than the classical system based on ML
HMMs.
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Fig. 12. Left side: verification of the hypothesis "Is it 0?" for instances of the spoken digit 4;
right side: the hypothesis "Is it 4?" is verified for instances of the spoken digit 0 (x axis:
database instances of the spoken digit, y axis: number of positive votes)

6. Conclusion

The class separation properties of different HMM structures and design methods are
compared. The margin was selected as a measure of class separation. It is shown that margin
may be increased by the iterative application of the classical Baum-Welch (or EM) algorithm
and duplication of the critical instances. A series of algorithms of Large Margin HMM design
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digit word ML LMp ML LMp
(SAMPA) base base test test

0 zero 556 672 372 344
1 jeden 452 785 259 266
2 dva 332 613 197 314
3 tSI 312 747 213 358
4 tSterI 275 823 48 321
5 pje ∼ ts′ 171 462 48 145
6 Ses′ts′ 665 798 601 484
7 s′edem 497 732 387 327
8 os′em 888 1129 763 602
9 dz′evje ∼ ts′ 429 650 306 190

mean value 458 741 319 335

Table 3. Margins for 10 spoken digits: ML- Maximum Likelihood training using the
Baum-Welch algorithm, LMp- pairwise training of the LM HMMs, base - instances used for
HMM design, test - instances used for testing)
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Fig. 13. Left side: verification of the hypothesis "Is it 9?" for instances of the spoken digit 5;
right side: the hypothesis "Is it 5?" is verified for instances of the spoken digit 9 (x axis:
database instances of the spoken digit, y axis: number of positive votes)

was proposed, based on corrective training and Iterative Localized Optimization. These
algorithms exhibit good convergence properties and relatively low complexity. Particularly
good results were obtained for pairs of HMMs optimized for two classes. It should be noted
that the proposed Large Margin HMM training algorithms may be easily implemented using
existing software (Baum-Welch or EM procedures). The LargeMargin effect is obtained by the
manipulation of the database.
The proposed algorithms were tested in a speaker independent system of robot controlling
commands recognition. The best results were obtained for a two-stage hierarchical
recognition. In the first stage either the classical HMMs or the Large Margin HMMs obtained
with the selective optimization algorithm were applied. In the second stage a disambiguation
of phonetically similar words was carried out, using pairs of Large Margin HMMs adapted to
the words being processed.
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For small number of classes (e.g. the spoken digits) the whole recognition system may be
based on pairs of Large Margin HMMs. Tests confirm the improvement of performance
(greater inter-class margin) in comparison to the classical recognition system based on the
Maximum Likelihood approach.

7. References

Altun, Y., Tsochantaridis, I. & Hofmann, T. (2003). Hidden Markov Support Vector Machines,
Proceedings of the Twentieth International Conference on Machine Learning - ICML-2003,
Washington DC.

Bahl, L., Brown, P., deSouza, P. & L.R., M. (1986). Maximummutual information estimation of
HiddenMarkovModel parameters for speech recognition, Proc. ICASSP 1986, Tokyo,
Japan, pp. 49–52.

Chang, H. & Glass, J. (2009). Discriminative training of hierarchical acoustic models for large
vocabulary continuous speech recognition, Proc. ICASSP 2009, pp. 4481–4484.

Dymarski, P. & Wydra, S. (2008). Large Margin Hidden Markov Models in command
recognition and speaker verification problems, Proc. of IWSSIP - International
Conference on Systems, Signals and Image Processing, Bratislava, Slovakia, pp. 221–224.

Fine, S., Saon, G. & Gopinath, R. (2002). Digit recognition in noisy environment via a
sequential GMM/SVM system, Proc. ICASSP 2002, vol.1, pp. 49–52.

Gosztolya, G. & Kocsor, A. (2005). A hierarchical evaluation methodology in speech
recognition, Acta Cybernetica Vol. 17: 213–224.

Hosseinzadeh, D. & Krishnan, S. (2008). On the use of complementary spectral features for
speaker recognition, EURASIP J. on Advances in Signal Proc. vol. 2008, art.ID 258184.

Jiang, H., Li, X. & Liu, C. (2006). LargeMarginHiddenMarkovModels for speech recognition,
IEEE Trans. on Audio, Speech and Language Processing Vol. 14(No. 5).

Kuo, H. & Gao, Y. (2006). Maximum entropy direct models for speech recognition, IEEE Trans.
on Audio, Speech and Language Processing Vol. 14(No. 3).

Macherey,W. &Ney, H. (2003). A comparative study onmaximum entropy and discriminative
training for acoustic modeling in automatic speech recognition, Proc. Eurospeech 2003,
Geneva, Switzerland, pp. 493–496.

Murphy, K. (2005). Hidden Markov Model (HMM) toolbox for Matlab.
URL: www.cs.ubc.ca/ murphyk/Software/HMM/hmm.html

Rabiner, L. (1989). A tutorial on Hidden Markov Models and selected applications in speech
recognition, Proc. of the IEEE Vol. 77(No. 2).

Sampa (n.d.). Sampa - computer readable phonetic alphabet.
URL: http://www.phon.ucl.ac.uk/home/sampa/polish.htm

Schlueter, R., Macherey, W., Kanthak, S., Ney, H. & Welling, L. (1997). Comparison of
optimization methods for discriminative training criteria, Proc. Eurospeech 1997,
pp. 15–18.

Sha, F. & Saul, L. (2007). Comparison of largemargin training to other discriminative methods
for phonetic recognition by Hidden Markov Models, Proc. ICASSP 2007, Honolulu,
Hawaii.

Siohan, O., Rosenberg, A. & Parthasarathy, S. (1998). Speaker identification using minimum
classification error training, Proc. ICASSP 1998, pp. 109–112.

Vapnik, V. (1998). Statistical Learning Theory, John Wiley and Sons.

129Hierarchical Command Recognition Based on Large Margin Hidden Markov Models



Wydra, S. (2007). Recognition quality improvement in automatic speech recognition system
for Polish, Proc. IEEE EUROCON 2007, Warsaw, Poland.

Yang, D., Xu, M. & Wu, W. (2002). Study on the strategy for hierarchical speech recognition,
Proc. ISCSLP 2002, paper 111.

130 Hidden Markov Models, Theory and Applications



Tomoki Toda
Nara Institute of Science and Technology

Japan

1. Introduction

Speech technologies such as speech recognition and speech synthesis have many potential
applications since speech is the main way in which most people communicate. Various
linguistic sounds are produced by controlling the configuration of oral cavities to convey a
message in speech communication. The produced speech sounds temporally vary and are
significantly affected by coarticulation effects. Thus, it is not straightforward to segment
speech signals into corresponding linguistic symbols. Moreover, the acoustics of speech vary
even if the same words are uttered by the same speaker due to differences in the manner of
speaking and articulatory organs. Therefore, it is essential to stochastically model them in
speech processing.
The hidden Markov model (HMM) is an effective framework for modeling the acoustics of
speech. Its introduction has enabled significant progress in speech and language technologies.
In particular, there have been numerous efforts to develop HMM-based acoustic modeling
techniques in speech recognition, and continuous density HMMs have been widely used in
modern continuous speech recognition systems (Gales & Young (2008)). Moreover, several
approaches have been proposed for applying the HMM-based acoustic modeling techniques
to speech synthesis technologies (Donovan & Woodland (1995); Huang et al. (1996)) such
as Text-to-Speech (TTS), which is ... from a given text. Recently, HMM-based speech
synthesis has been proposed (Yoshimura et al. (1999)) and has generated interest owing to
its various attractive features such as completely data-driven voice building, flexible voice
quality control, speaker adaptation, small footprint, and so forth (Zen et al. (2009)).
A basic framework of HMM-based speech synthesis consists of training and synthesis
processes. In the training process, speech parameters such as spectral envelope and
fundamental frequency (F0) are extracted from speech waveforms and then their time
sequences are modeled by context-dependent phoneme HMMs. To model the dynamic
characteristics of speech acoustics with HMMs, which assume piecewise constant statistics
within an HMM state and conditional independence, a joint vector of static and dynamic
features is usually used as an observation vector. In the synthesis process, a smoothly
varying speech parameter trajectory is generated by maximizing the likelihood of a composite
sentence HMM subject to a constraint between static and dynamic features with respect to
not the observation vector sequence including both static and dynamic features but the static
feature vector sequence (Tokuda et al. (2000)). Finally, a vocoding technique is employed
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to generate a speech waveform from the generated speech parameters. This framework
for directly generating speech parameters from the HMMs has the potential to be used for
developing very flexible TTS systems. On the other hand, the quality of the synthetic speech
is noticeably degraded compared with the original spoken audio. It is known that the static
feature vectors generated from the HMMs are often oversmoothed, which is one of the main
factors causing the muffled effect in synthetic speech.
There have been some attempts to model new features of speech acoustics to ensure that
the generated parameters exhibit similar properties to those of natural speech, thus reducing
the oversmoothing effect. As one of the most effective features for capturing properties not
well modeled by traditional HMMs, Toda and Tokuda (Toda & Tokuda (2007)) proposed
the global variance (GV), which is the variance of the static feature vectors calculated over
a time sequence (e.g., over an utterance). It has been found that the GV is inversely correlated
with the oversmoothing effect. Therefore, a metric on the GV of the generated parameters
effectively acts as a penalty term in the parameter generation process. Several papers (Toda
& Tokuda (2007); Zen et al. (2007a; 2008)) have reported that the naturalness of synthetic
speech is significantly improved by considering the GV in HMM-based speech synthesis.
Moreover, it has been reported that the use of the GV is also effective for improving other
statistical parametric speech synthesis techniques such as voice conversion (Toda et al. (2007)).
It is not an exaggeration to say that GV modeling has significantly contributed to the recent
improvements in those techniques.
This chapter presents an overview of the techniques for modeling a speech parameter
sequence considering the GV for HMM-based speech synthesis. First, the traditional
framework for HMM-based speech synthesis and its weaknesses are described. Then, the
parameter generation algorithm considering the GV (Toda & Tokuda (2007)) is presented as
an effective approach to addressing the oversmoothing problem caused by the traditional
modeling process. This algorithm is capable of generating the parameter trajectory, yielding
a significant improvement in synthetic speech quality while maintaining its GV close to its
natural value. Furthermore, a training method considering the GV (Toda & Young (2009))
is presented, which is derived by introducing the GV-based parameter generation into the
HMM training process. It is shown that this method yields some additional advantages
such as the use of a consistent optimization criterion between the training and synthesis
processes and the use of a closed-form solution for parameter generation, whereas only an
iterative solution is available if the GV is considered in only the parameter generation process.
Finally, several experimental results are presented to demonstrate that these methods yield a
significant improvement in the naturalness of synthetic speech.

2. Basic framework of HMM-based speech synthesis

Figure 1 shows a schematic image of the basic training and synthesis processes of HMM-based
speech synthesis. In the training process, the time sequence of the static feature vectors c is
linearly transformed into a higher-dimensional space using the linear transformation function
fo(c). Then, the transformed feature vector sequence consisting of static and dynamic feature
vectors o is modeled with HMMs. In the synthesis process, the static feature vector sequence
is determined by maximizing the likelihood of the HMMs for the static and dynamic feature
vectors with respect to only the static feature vectors under the constraint given by the linear
transformation function. The following subsections give more details of these training and
synthesis processes.
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Fig. 1. Schematic image of basic training and synthesis processes of HMM-based speech
synthesis.

2.1 Speech parameter sequence modeling
Let us assume a D-dimensional static feature vector of a speech parameter ct = [ct(1) , ct(2),
· · · , ct(d), · · · , ct(D)]� at frame t. To suitably model the dynamic properties of the speech
parameter with HMMs, the first dynamic feature vector Δ(1)ct and the second dynamic feature
vector Δ(2)ct are calculated frame by frame as follows:

Δ(n)ct =
L(n)
+

∑
τ=−L(n)

−

w(n)(τ)ct+τ, n = 1, 2, (1)

where w(n)(t) is a regression coefficient used to calculate the dynamic features from the

current frame, L(n)
− previous frames, and L(n)

+ succeeding frames,1 and then a joint static and

dynamic feature vector ot =
[
c�t ,Δ(1)c�t ,Δ(2)c�t

]�
is used as the observation vector. The

time sequence vectors of the joint static and dynamic feature vector ot and the static feature

vector ct are written as o =
[
o�1 , o�2 , · · · , o�t , · · · , o�T

]�
and c =

[
c�1 , c�2 , · · · , c�t , · · · , c�T

]�
,

respectively. The relationship between these two time sequence vectors is represented as a
linear transformation as follows:

o = Wc, (2)

where W is the 3DT-by-DT matrix written as

W = [W1,W2, · · · ,W t, · · · ,WT ]
� ⊗ ID×D, (3)

W t =
[
w(0)

t ,w(1)
t , w(2)

t

]
, (4)

w(n)
t =

[
0︸︷︷︸
1st

, · · · , 0, w(n)(−L(n)
− )︸ ︷︷ ︸(

t−L(n)
−
)
-th

, · · · ,w(n)(0)︸ ︷︷ ︸
(t)-th

, · · · ,w(n)(L(n)
+ )︸ ︷︷ ︸(

t+L(n)
+

)
-th

, 0, · · · , 0︸︷︷︸
T-th

]�
, (5)

1 For example, when the number of frames to be used for calculating dynamic features is set to L(1)
− =

L(1)
+ = 1 and L(2)

− = L(2)
+ = 1, the regression coefficients can be set to w(1)(t− 1) = −0.5, w(1)(t) = 0,

w(1)(t + 1) = 0.5, w(2)(t− 1) = 1, w(2)(t) = −2, and w(2)(t + 1) = 1.
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where L(0)
− = L(0)

+ = 0, and w(0)(0) = 1. The operator ⊗ denotes the Kronecker product. The
matrix ID×D denotes the D-by-D identity matrix. It is important to note that the joint static
and dynamic feature vector sequence o is generated from the static feature vector sequence c
using the linear transformation function given by Eq. (2).
The observation sequence vector o is modeled by context-dependent phoneme HMMs, whose
the parameter set is denoted by λ. The state output probability density function (p.d.f.) of
ot at an HMM state q is usually modeled by a single multivariate Gaussian distribution as
follows:

N
(

ot; μq,Uq

)
=

1√
(2π)3D |Uq|

exp
(
− 1
2

(
ot − μq

)�
U−1

q

(
ot − μq

))
, (6)

where μq and Uq are the mean vector and the covariance matrix, respectively. The p.d.f. of
the observation sequence vector o given an HMM state sequence q = {q1, q2, · · · , qt, · · · , qT}
is written as

P (o|q, λ) =
T

∏
t=1
N

(
ot; μqt

,Uqt

)

= N
(

o; μq,Uq
)
, (7)

where μq and Uq are the 3D-by-1 mean vector and the 3D-by-3D covariance matrix,
respectively, which are given by

μq =
[
μ�q1 , μ

�
q2 , · · · , μ�qt

, · · · , μ�qT

]�
, (8)

Uq = diag
[
Uq1 ,Uq2 , · · · ,Uqt , · · · ,UqT

]

=

⎡
⎢⎢⎢⎣

Uq1
Uq2

. . .
UqT

⎤
⎥⎥⎥⎦ . (9)

The operator diag[·] denotes the transformation from a rectangular matrix (or a vector) to a
block diagonal matrix (or a diagonal matrix). The likelihood function given the HMM set for
the observation sequence vector o is given by

P (o|λ) = ∑
all q

P (o, q|λ)

= ∑
all q

P (o|q,λ) P (q|λ) , (10)

where P (q|λ) is usually modeled by state transition probabilities in speech recognition.
However, in speech synthesis explicit duration models are often incorporated into the HMMs
to model the temporal structure of a speech parameter sequence appropriately (Yoshimura et
al. (1999); Zen et al. (2007b)). In training, the HMM parameter set λ is optimized for the given
observation sequence vectors o(1), o(2), · · · , o(k), · · · , o(K) in the sense of maximum likelihood
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(ML) as follows:

λ̂ = argmax
λ

K

∏
k=1

P
(

o(k)|λ
)
, (11)

where K is the total number of observation sequence vectors.

2.2 Parameter generation based on maximum likelihood criterion
In synthesis, a time sequence of static feature vectors is determined by maximizing the HMM
likelihood under the condition given by Eq. (2) as follows:

ĉ = argmax
c

P (o|λ) subject to o = Wc. (12)

To reduce the computational cost, the HMM likelihood is usually approximated with a single
HMM state sequence as follows:

P(o|λ) � P(o|q,λ)P(q|λ), (13)

and then the HMM state sequence and the static feature vector sequence are sequentially
determined. First a suboptimum HMM state sequence is determined by

q̂ = argmax P(q|λ). (14)

Then, the static feature vector sequence is determined by maximizing the HMM likelihood
given the HMM state sequence q as follows:

ĉ = argmax P(o|q, λ) subject to o = Wc. (15)

The objective function Lq to be maximized with respect to the static feature vector sequence
is given by

Lq = log P(o|q,λ) (16)

∝ − 1
2

o�U−1
q o+ o�U−1

q μq

= − 1
2

c�W�U−1
q Wc + c�W�U−1

q μq

= − 1
2

c�Rqc + c�rq, (17)

where

Rq = W�U−1
q W , (18)

rq = W�U−1
q μq. (19)

The ML estimate of the static feature vector sequence cq is given by

cq = Pqrq, (20)

Pq = R−1q . (21)
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Fig. 2. An example of natural and generated spectral segments.

Since the matrix Pq is generally full owing to the inverse of the band matrix Rq, the state
output p.d.f. at each HMM state affects the ML estimates of the static feature vectors
at all frames over a time sequence. This parameter generation algorithm is capable of
generating speech parameter trajectories that vary frame by frame from the p.d.f. sequence
corresponding to discrete state sequences so that the generated trajectories exhibit suitable
static and dynamic properties.
The calculation of the ML estimate is efficiently performed by the Cholesky decomposition
of Rq and the forward/backward substitution operation. It is also possible to implement
a recursive estimation process so as to generate the static feature vectors frame by frame
(Tokuda et al. (1995)). Furthermore, although only the case of using a single multivariate
Gaussian distribution as the state output p.d.f. is described in this section, Gaussian mixture
models can also be employed in this framework by using the Expectation-Maximization (EM)
algorithm (Tokuda et al. (2000)).

2.3 Oversmoothing effect
In HMM-based speech synthesis, speech samples synthesized with the generated speech
parameters often sound muffled. One of the factors causing the muffled sound is the
oversmoothing of the generated speech parameters. Figure 2 shows an example of natural
and generated spectral segments. It can be observed from this figure that the generated
spectra are often excessively smoothed compared with the natural spectra. The statistical
modeling processwithHMMs tends to remove the details of spectral structures. Although this
smoothing results in reduced error in the generation of spectra, it also causes the degradation
of naturalness of synthetic speech because the removed structures are still necessary for
synthesizing high-quality speech.

3. Parameter generation considering global variance

To reduce oversmoothing, a parameter generation algorithm considering the GV has been
proposed (Toda & Tokuda (2007)). A schematic image of the training and synthesis processes
is shown in Figure 3. In the training process, the linearly transformed feature vector sequence
consisting of static and dynamic feature vectors o is modeled with HMMs in the same manner
as discussed in Section 2. Also, the time sequence of the static feature vectors c is nonlinearly
transformed into the GV v using the nonlinear transformation function fv(c), and then its
p.d.f. is modeled with a continuous density distribution. In the synthesis process, the static
feature vector sequence is determined by maximizing the product of the HMM likelihood and
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Fig. 3. Schematic image of training and synthesis processes of HMM-based speech synthesis
with GV-based parameter generation algorithm.

the GV likelihood. The following subsections give more details of these training and synthesis
processes.

3.1 Global Variance (GV)
The GV vector v(c) = [v(1), · · · , v(d), · · · , v(D)]� of a static feature vector sequence c is
calculated by

v(d) =
1
T

T

∑
t=1

(ct(d)− 〈c(d)〉)2 , (22)

where

〈c(d)〉 = 1
T

T

∑
τ=1

cτ(d). (23)

The GV is often calculated utterance by utterance.
Figure 4 shows a time sequence of the 2nd mel-cepstral coefficients extracted from natural
speech and that generated from the HMM, where mel-cepstrum is one of the most effective
spectral parameters (Tokuda et al. (1994)). It can be observed that the GV of the generated
mel-cepstra (given by Eq. (20)) is smaller than that of the natural ones. The ML criterion
usually makes the generated trajectory close to the mean vector sequence of the HMM.
Consequently, the reduction of GV is often observed.

3.2 Parameter generation algorithm considering GV
To consider the GV in the parameter generation process, the p.d.f. of the GV is modeled by a
single multivariate Gaussian distribution, which is given by
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P(v(c)|λv) = N (v(c); μv,Uv)

=
1√

(2π)D|Uv|
exp

(
− 1
2
(v(c)− μv)

� U−1
v (v(c)− μv)

)
, (24)

where λv denotes the GV parameter set consisting of the mean vector μv and the covariance
matrix Uv. The GV parameter set λv and the HMMparameter set λ are independently trained
from speech samples in the training data.
In the synthesis process, given a suboptimum HMM state sequence q, the static feature vector
sequence is determined by maximizing a new likelihood function given by a product of the
HMM likelihood for the static and dynamic feature vectors and the GV likelihood as follows:

ĉ = argmax P(o|q,λ)P(v(c)|λv)
ωT subject to o = Wc, (25)

where the constant ω denotes the GV weight, used for controlling the balance between the
two likelihoods, which is usually set to the ratio between the number of dimensions of vectors
v(c) and o (i.e., ω = 3). Note that this likelihood function with an additional constraint on the
GV of the generated trajectory is still a function of the static feature vector sequence c. The GV
likelihood P(v(c)|λv) can be viewed as a penalty term for a reduction of the GV. The objective

function L(GV)
q to be maximized with respect to the static feature vector sequence is written as

L(GV)
q = logP(o|q,λ) + ωT logP(v(c)|λv) (26)

∝ − 1
2

c�Rqc + c�rq + ωT
(
− 1
2

v(c)�U−1
v v(c) + v(c)�U−1

v μv

)
. (27)

This objective function is equivalent to the traditional function given by Eq. (16) when the GV
weight ω is set to 0. To determine the static feature vector sequence maximizing the objective
function, an iterative process for updating ĉ employing the gradient method is necessary as
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follows:

ĉ(i+1)-th = ĉ(i)-th+ α · δĉ(i)-th, (28)

where α is the step size parameter. The following two gradient methods are basically
employed to calculate the vector δĉ(i)-th.
Steepest descent algorithm: Using the steepest descent algorithm, δĉ(i)-th is written as

δĉ(i)-th =
∂L(GV)

q
∂c

∣∣∣∣∣∣
c=ĉ(i)-th.

(29)

The first derivative is calculated by

∂L(GV)
q
∂c

= −Rqc + rq + ωx, (30)

x =
[

x�1 , x�2 , · · · , x�t , · · · , x�T
]�

, (31)

xt = [xt(1), xt(2), · · · , xt(d), · · · , xt(D)]� , (32)

xt(d) = −2 (ct(d)− 〈c(d)〉) (v(c)− μv)
� p(d)

v , (33)

where p(d)
v is the d-th column vector of the precision matrix Pv(= U−1

v ).
Newton-Raphson method: If the initial value of the static feature vector sequence ĉ(0)-th is
close to the optimum value, the Newton-Raphson method using not only the first derivative
but also the second derivative, i.e., the Hessian matrix, may also be used. The vector δĉ(i)-th is
written as

δĉ(i)-th = −
⎛
⎝ ∂2L(GV)

q

∂c∂c�

⎞
⎠
−1

∂L(GV)
q
∂c

∣∣∣∣∣∣∣
c=ĉ(i)-th.

(34)

Because a Hessian matrix is not always a positive-definite matrix, the following second
derivative, approximated using only diagonal elements, is used:

∂2L(GV)
q

∂c∂c�
� diag

[
−diag−1

[
Rq

]
+ ωy

]
, (35)

y =
[
y�1 , y

�
2 , · · · , y�t , · · · , y�T

]�
, (36)

yt =

[
δxt(1)
δct(1)

,
δxt(2)
δct(2)

, · · · , δxt(d)
δct(d)

, · · · , δxt(D)

δct(D)

]�
, (37)

δxt(d)
δct(d)

= − 2
T

{
(T − 1) (v(c)− μv)

� p(d)
v + 2 (ct(d)− 〈c(d)〉)2 p(d)

v (d)
}
, (38)

where the operator diag−1[·] denotes the inverse operation of diag[·]; i.e., the extraction of
only the diagonal elements (or block diagonal matrices) from a square matrix.
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There are two main methods for setting the initial value of the static feature vector sequence
ĉ(0)-th. One is to use the ML estimate cq given by Eq. (20) in the traditional parameter
generation process. The other is to use the static feature vector sequence c′ linearly converted
from the ML estimate so that its GV is equivalent to the mean vector of the GV p.d.f., μv, as
follows:

c′t(d) =

√
μv(d)
v(d)

(ct(d)− 〈c(d)〉) + 〈c(d)〉 , (39)

where μv(d) is the d-th element of the mean vector μv. The former sequence maximizes the
HMM likelihood P(o|q,λ), while the latter sequencemaximizes the GV likelihood P(v(c)|λv).
It is reasonable to start the iterative update from the static feature vector sequence yielding a
higher value of the objective function given by Eq. (26).

3.3 Effectiveness of considering GV
It is well known that postfiltering to increase the sharpness of spectral peaks is effective
for improving synthetic speech quality (Koishida et al. (1995)), in which it is necessary to
empirically adjust a parameter to control the degree of emphasis. Moreover, this parameter is
usually kept constant over different frames. On the other hand, when considering the GV, at a
certain dimension the trajectory movements are greatly emphasized, but at another dimension
they remain almost the same. The degree of emphasis varies between individual dimensions
and frames, and it is automatically determined from the objective function given by Eq. (26).
This process may be regarded as statistical postfiltering.
Using more mixture components to model the probability density also reduces
oversmoothing. However, it also causes another problem of overtraining due to an increase
in the number of model parameters, which often causes performance degradation for data
samples not included in the training data. One of the advantages of considering the GV is
that the number of parameters is kept almost equal to that when not considering the GV.
In addition, since the proposed framework is based on a statistical process, it retains many
advantages of statistical parametric speech synthesis, such as allowing model adaptation
(Yamagishi et al. (2009)) in a manner supported mathematically.

3.4 Weakness
The main weakness of considering the GV is the inconsistency between the training and
synthesis criteria. In the training, the likelihood for the joint static and dynamic feature vectors
is used to optimize the HMMparameters and the likelihood for the GV is used to optimize the
GV p.d.f. parameters. These two models are independently optimized. On the other hand, in
the synthesis, the product of these two likelihoods is used to optimize only the static feature
vectors. Consequently, the trained model parameters are not optimum for this parameter
generation process.
The GV p.d.f. given by Eq. (24) is context-independent. Hence, it does not capture variations
of the GV caused by different contextual factors. A context-dependent model may be used as
the GV p.d.f. to capture them. However, if the GV is calculated utterance by utterance, the
number of GV samples used to train the context-dependent model is relatively small; i.e., only
the number of utterances in the training data. Therefore, the number of context-dependent
GV p.d.f.s is often limited to avoid the overtraining problem.
The parameter generation process with the GV requires the gradient method. Thus, it has a
greater computational cost than the traditional parameter generation process, for which the
closed-form solution can be used.
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Fig. 5. Schematic image of training and synthesis processes of HMM-based speech synthesis
with GV-constrained trajectory training algorithm.

4. HMM training considering global variance

The traditional framework described in Section 2 also suffers from the inconsistency between
the training and synthesis criteria. To address this issue, Zen et al. (Zen et al. (2007c))
proposed the trajectory HMM, which is derived by imposing an explicit relationship between
static and dynamic features on the traditional HMM. This method allows the utilization of a
unified criterion, i.e., the trajectory likelihood, in both training and synthesis processes. In a
similar spirit, Wu andWang (Wu &Wang (2006)) proposedminimum generation error (MGE)
training. This method optimizes the HMMparameters so that the error between the generated
and natural parameters is minimized.
Inspired by these approaches, the idea of considering the GV has been introduced to the
model training process to make it possible to use the same objective function consisting of
the GVmetric in both the training process and the synthesis process (Toda & Young (2009)). A
schematic image of the training and synthesis processes is shown in Figure 5. The basicHMMs
that model the p.d.f. of the joint static and dynamic feature vector sequence are reformulated
as the trajectory HMM, which models the p.d.f. of the static feature vector sequence by
imposing the constraint given by the linear transformation function fo(c). Furthermore, the
GV p.d.f. is generated from the trajectoryHMMbased on the constraint given by the nonlinear
transformation function fv(c). Then, the basic HMM parameters are optimized so that the
objective function defined as the product of the likelihood of the trajectory HMM and the
likelihood of the generated GV p.d.f. is maximized. In the synthesis process, the static feature
vector sequence is determined by maximizing the same objective function. The following
subsections give more details of these training and synthesis processes.

4.1 Trajectory HMM
The traditional HMM is reformulated as a trajectory HMM by imposing an explicit
relationship between static and dynamic features, which is given by Eq. (2) (Zen et al. (2007c)).
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The p.d.f. of c in the trajectory HMM is given by

P (c|λ) = ∑
all q

P (c|q,λ) P (q|λ) , (40)

P(c|q,λ) = 1
Zq

P(o|q,λ)

= N (c; cq,Pq), (41)

where the normalization term Zq is given by

Zq =
∫

P(o|q,λ)dc

=

√
(2π)DT |Pq|√
(2π)3DT |Uq|

exp
(
− 1
2
(μ�q U−1

q μq − r�q Pqrq)

)
. (42)

In Eq. (41), the mean vector cq (given by Eq. (20)) varies within the states, and the interframe
correlation is modeled by the temporal covariance matrix Pq (given by Eq. (21)) even when
using the same number of model parameters as in the traditional HMM. Note that the mean
vector of the trajectory HMM is equivalent to the ML estimate of the generated static feature
sequence in the traditional parameter generation process. Namely, the traditional parameter
generation process is equivalent to the maximization process of the likelihood function of
the trajectory HMM with respect to the static feature vector sequence. The utilization of the
trajectory likelihood as a unified criterion in both training and synthesis processes makes it
possible to optimize the HMM parameters for parameter generation.

4.2 GV-constrained trajectory training
The parameter generation process considering the GV given by Eq. (25) has been modified
and integrated into a training framework as follows:

λ̂ = argmax
λ

P(c|q, λ)P(v(c)|q,λ)ωT , (43)

where P(c|q, λ) is given by Eq. (41) and P(v(c)|q,λ) is the modified GV p.d.f., which is given
by

P(v(c)|q,λ) = N (
v(c); v(cq),Uv

)
. (44)

Note that the mean vector of the GV p.d.f. is defined as the GV of the mean vector of the
trajectory HMM, which is equivalent to the GV of the generated parameters from the HMMs
given by Eq. (20). Hence, the GV likelihood P(v(c)|q,λ) acts as a penalty term to make the
GV of the generated parameters close to that of the natural ones. The balance between the
two likelihoods P(c|q, λ) and P(v(c)|q,λ) is controlled by the GV weight ω. The objective

function L(GV)′
q used in both training and synthesis processes is given by

L(GV)′
q = log P(c|q,λ) + ωT logP(v(c)|q,λ). (45)
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Given the HMM state sequence q,2 the GV weight ω, and the GV covariance matrix Uv, the

HMM parameter set is optimized by maximizing the proposed objective function L(GV)′
q . The

mean vectors and diagonal precision matrices at all HMM states (from 1 to N), which are
given by

m =
[
μ�1 , μ

�
2 , · · · , μ�N

]�
, (46)

Σ−1 =
[
U−1

1 ,U−1
2 , · · · ,U−1

N

]�
, (47)

are simultaneously updated since they depend on each other. The mean vectors m are
iteratively updated using the following gradient:

∂L(GV)′
q
∂m

= A�q U−1
q W

(
c− cq + ωPqxq

)
, (48)

where

xq =
[

x�q,1, x�q,2, · · · , x�q,t, · · · , x�q,T
]�

, (49)

xq,t =
[
xq,t(1), xq,t(2), · · · , xq,t(d), · · · , xq,t(D)

]� , (50)

xq,t(d) = −2
(
cq,t(d)−

〈
cq(d)

〉) (
v(cq)− v(c)

)� p(d)
v , (51)

and Aq is a 3DT-by-3DN matrix whose elements are 0 or 1 depending on the state sequence
q. The precision matrices Σ−1 are iteratively updated using the following gradient:

∂L(GV)′
q

∂Σ−1
=

1
2

A�q diag−1
[
W(Pq + cqc�q − cc�)W� − 2μq(cq − cq)

�W�

+2ωWPqxq(μq −Wcq)
�] . (52)

This update is performed on a logarithmic domain to ensure that the updated covariance
matrices are positive definite. Although only the case of using a single observation sequence
for training data is described here, it is straightforward to extend this training algorithm to
multiple observation sequences. This training algorithm enables the HMM parameters to be
optimized so that both the generated parameter trajectory and its GV are close to the natural
ones.
The proposed objective function L′q is also used in parameter generation. The static feature
vector sequence is determined by

ĉ = argmax
c
L(GV)′

q

= argmax
c
N (c; cq,Pq)N (v(c); v(cq),Uv)

= cq. (53)

2 A suboptimum HMM state sequence may be determined by the Viterbi algorithm with the traditional
likelihood, i.e., P(q|λ)P(o|q,λ).
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Note that this estimate is equivalent to the ML estimate (given by Eq. (20)) in the traditional
parameter generation algorithm because the GV likelihood is always maximized by setting
the generated parameters to the mean vector of the trajectory HMM. Therefore, it is no longer
necessary to practically consider the GV term in parameter generation, and the traditional
parameter generation algorithm can be directly employed. Note that the traditional algorithm
is computationally much more efficient than the parameter generation algorithm considering
the GV, which requires an iterative process as mentioned in Section 3.2.

4.3 Discussion
GV-constrained trajectory training addresses some of the issues of parameter generation
considering the GV described in Section 3.4. It provides a unified framework using the same
objective function in both training and synthesis processes. It also allows the closed-form
solution to be used in parameter generation. This makes it possible to implement the recursive
estimation process, which generates the static feature vectors frame by frame (Tokuda et
al. (1995)), which is very effective for achieving a low-delay synthesis process. Moreover,
context-dependent GV modeling can be easily implemented without increasing the number
of model parameters. It has been found that the variations of the GV tend to be larger
with decreasing number of frames (i.e., the total duration of an utterance). Therefore, the
parameter generation algorithm considering the GV sometimes causes highly artificial sounds
in synthetic speech when synthesizing very short utterances such as one word. This problem
is effectively addressed by GV-constrained trajectory training.
In an attempt to apply the idea of considering the GV in the HMM training process, Wu
et al. (Wu et al. (2008)) proposed MGE training that considers the error in the GV between
natural and generated parameters as well as the generation errormentioned above. The HMM
parameters are optimized so that both the generated parameters and their GV are similar to
the natural ones. This method is similar to GV-constrained trajectory training. One of the
differences between these twomethods is that not only frame-by-frame (weighted) generation
errors but also the correlation between the errors over a time sequence is considered in
GV-constrained trajectory training because of the use of the temporal covariance matrix of
the trajectory HMM, Pq.

5. Experimental evaluation

The effectiveness of parameter generation considering the GV and that of GV-constrained
trajectory training were evaluated separately.

5.1 Experimental conditions

The 0th through 24th mel-cepstral coefficients were used as spectral parameters and log-scaled
F0 was used as the excitation parameter. A high-quality speech analysis-synthesis method
called Speech Transformation and Representation using Adaptive Interpolation of weiGHTed
spectrum (STRAIGHT) (Kawahara et al. (1999)) was employed for the analysis-synthesis
method. Each speech parameter vector included the static features and their delta and
delta-deltas. The frame shift was set to 5 ms.
Context-dependent phoneme HMMs were trained for each of the spectral and F0 components
using a decision-tree-based context-clustering technique based on the minimum description
length (MDL) criterion (Shinoda & Watanabe (2000)). The spectral component was modeled
by the continuous density HMM, of which each state output p.d.f. was modeled by a
single Gaussian with a diagonal covariance matrix. The F0 component was modeled by the
multispace probability distribution HMM (MSD-HMM) (Tokuda et al. (2002)) to model a time
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Fig. 6. GVs of several mel-cepstrum sequences. The values shown are GV mean values over
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sequence consisting of continuous values, i.e., log-scaled values of F0, and discrete symbols
that represent unvoiced frames. Static, delta, and delta-delta values of F0 were modeled in
different streams (Yoshimura et al. (1999)). Context-dependent duration models for modeling
the state duration probabilities were also trained.
In the synthesis, a sentence HMM for given input contexts was constructed by concatenating
the context-dependent phoneme HMMs, and then a suboptimum state sequence was
determined from the state duration model. Mel-cepstrum and F0 sequences were directly
generated from p.d.f. sequences corresponding to the determined suboptimum state
sequence. A speech waveform was synthesized by filtering the excitation signal, which was
designed using the generated excitation parameters, based on the generated mel-cepstra with
the Mel Log Spectrum Approximation (MLSA) filter (Imai (1983)).

5.2 Evaluations of parameter generation considering GV
To evaluate the parameter generation algorithm considering the GV, voices were built for four
Japanese speakers (two males, MHT and MYI, and two females, FTK and FYM) in the ATR
Japanese speech database B-set (Sagisaka et al. (1990)), which consists of 503 phonetically
balanced sentences. For each speaker, 450 sentences were used as training data and the
other 53 sentences were used for evaluation. Context-dependent labels were prepared from
phoneme and linguistic labels included in the ATR database. A Gaussian distribution of the
GV p.d.f. for each of the spectral and F0 components was trained using the GVs calculated
from individual utterances in the training data. The GV weight ω was set to 1.0.
Figure 6 shows the GVs of mel-cepstra generated with the traditional generation algorithm
and those with the generation algorithm considering the GV. For the traditional algorithm,
the GVs of the generated mel-cepstra when using the postfilter to emphasize the mel-cepstra
(Koishida et al. (1995)) are also shown. The filtering coefficient β was set to 0.4 or 0.8. The GV
of the natural mel-cepstra is also shown in the figure as a reference. It can be seen that the GV
of the mel-cepstra generated with the traditional algorithm is small. Although postfiltering
increases the GV, the GV characteristics of the emphasized mel-cepstra are obviously different
from those of the natural ones. On the other hand, mel-cepstra whose GV is almost equal to
that of the natural ones are generated when considering the GV.
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Generation method MOS ± 95% confidence interval
Generated w/o GV 2.53 ± 0.12
Generated with GV 3.46 ± 0.15
Natural (analysis-synthesized) 4.35 ± 0.12

Table 1. Mean opinion score (MOS) on naturalness given in opinion test to evaluate
parameter generation with GV.
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Figure 7 shows the logarithmic HMM and GV likelihoods on mel-cepstrum sequences, which
are normalized by the number of frames. It is reasonable that the largest HMM likelihood
is yielded by the traditional algorithm (β = 0.0) and that it decreases when the postfilter is
applied or the GV is considered. An interesting point is that the HMM likelihood for the
natural sequence is smaller than those for the generated sequences. This implies that we
do not necessarily generate the speech parameter sequence that maximizes only the HMM
likelihood, although it seems reasonable to keep the likelihood larger than that for the natural
sequence. The GV likelihoods are very small when using the traditional algorithm because
of the GV reduction shown in Figure 6. Although it is observed that they are recovered by
postfiltering, the resulting likelihoods are still much smaller than that for the natural sequence.
On the other hand, the algorithm considering the GV generates a sequence for which the GV
likelihood is sufficiently large. Consequently, it makes both HMM and GV likelihoods exceed
those for the natural sequence. These results demonstrate that the algorithm considering the
GV is capable of generating more similar speech parameter sequences to those of natural
speech from the viewpoint of satisfying a greater variety of characteristics than the traditional
algorithm.
Table 1 shows the result of a subjective evaluation based on an opinion test on the naturalness
of the synthetic speech. The opinion score was set to a 5-point scale (5: excellent, 4: good, 3:
fair, 2: poor, 1: bad) and ten Japanese listeners participated in the test. It is observed that the
generation algorithm considering the GV yields significant quality improvements compared
with the traditional generation algorithm. It effectively reduces muffled sounds of synthetic
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voices caused by the oversmoothing effect.3 An example of spectrum sequences is shown
in Figure 8. The algorithm considering the GV generates much sharper spectral peaks than
those generated by the conventional algorithm. Note that increasing the GV usually causes an
increase in mel-cepstral distortion between the generated sequence and the natural sequence,
which is strongly correlated with the decrease in the HMM likelihood shown in Figure 7.
It is possible that simply increasing the GV will cause the quality degradation of synthetic
speech because it does not always make the generated sequence close to the natural one.
The GV-based generation algorithm increases the GV by considering the GV likelihood while
also considering the HMM likelihood to reduce the quality degradation due to the excessive
increase in the GV.

5.3 Evaluation of GV-constrained trajectory training
To evaluate the GV-constrained trajectory training method, voices were built for four English
speakers (2 males: bdl and rms, and 2 females: clb and slt) in the CMU ARCTIC database
(Kominek & Black (2003)). For each speaker, we used subset A, which consists of about 600
sentences as training data and the remaining subset B, which consists of about 500 sentences
for evaluation. Context-dependent labels were automatically generated from texts using a text
analyzer. After initializing the HMM parameters in the traditional training process, trajectory
training was performed for the spectral and F0 components. Finally, GV-constrained trajectory
training was performed for both components. The covariance matrix of the GV p.d.f. for each
component was previously trained using the GVs calculated from individual utterances in the
training data. The GV weight ω was empirically set to 0.125.
Table 2 shows the log-scaled trajectory likelihood, GV likelihood, and total likelihood for the
training data and evaluation data, where the total likelihood is calculated as the product of
the trajectory and GV likelihoods. All values are normalized by the number of frames. The
trajectory training causes significant improvements in the trajectory likelihoods because the
HMM parameters are optimized so as to directly maximize the trajectory likelihoods. It is
interesting to note that the trajectory training also causes improvements in the GV likelihood,
although the improvements are not large. These results suggest that the trajectory training

3 Several samples are available from http://isw3.naist.jp/˜tomoki/INTECH/ModelGV/index.html
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Training method Training data Evaluation data

Traditional
Trajectory
GV-constrained

Trajectory GV Total
19.06 -67.63 -48.57
30.78 -32.35 -1.57
30.36 94.98 125.34

Trajectory GV Total
16.26 -67.86 -51.60
29.30 -33.33 -4.03
28.89 82.51 111.40

Table 2. Log-scaled trajectory likelihood given by Eq. (41), GV likelihood given by Eq. (44),
and total likelihood given by Eq. (43) (ω = 1.0) for each training method.

Training method MOS ± 95% confidence interval
Traditional 2.35 ± 0.14
Trajectory 2.79 ± 0.12
GV-constrained 3.46 ± 0.15
Natural (analysis-synthesized) 4.38 ± 0.13

Table 3. Mean opinion score (MOS) on naturalness given in opinion test to evaluate
GV-constrained trajectory training.

generates better parameter trajectories than the traditional training. The GV likelihoods are
dramatically improved by GV-constrained trajectory training. Note that this training method
does not cause significant reductions to the trajectory likelihoods. This can be observed in
both the training and evaluation data. Overall, these results suggest that the GV-constrained
trajectory training method leads to parameter trajectories that more closely resemble the
various characteristic features of real speech.
Table 3 shows the result of a subjective evaluation based on an opinion test on the naturalness
of the synthetic speech. The opinion score was set to the same 5-point scale as before and
ten listeners participated in the test. GV-constrained trajectory training yields significant
quality improvements compared with the traditional training. This tendency is similar to that
observed when considering the GV in the parameter generation process, as shown in Table 1.
The trajectory training also yields significant quality improvements, but these improvements
are much smaller than those yielded by GV-constrained trajectory training. 4

6. Summary

This chapter has described the two main techniques for modeling a speech parameter
sequence considering the global variance (GV) for HMM-based speech synthesis: the
parameter generation algorithm considering the GV and GV-constrained trajectory training.
The traditional framework of HMM-based speech synthesis suffers from the oversmoothing
effect in speech parameters generated from the HMM, which makes the synthetic speech
sound muffled. Since the GV is inversely correlated with the oversmoothing effect, a metric
on the GV of the generated parameters is effectively used to reduce muffled sounds. The
parameter generation algorithm considering the GVuses not only anHMM likelihoodbut also
a GV likelihood to determine the generated parameters. GV-constrained trajectory training
has been proposed by integrating this idea into a training framework. Consequently, it
provides a unified framework for training and synthesizing speech using a common criterion,
context-dependent GV modeling, and a more efficient parameter generation process with
the GV based on a closed-form solution. Experimental results have demonstrated that both

4 Several samples are available from http://isw3.naist.jp/˜tomoki/INTECH/ModelGV/index.html
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methods yield very significant improvements in the naturalness of synthetic speech and that
GV modeling is very effective in HMM-based speech synthesis.
Acknowledgements: This research was supported in part by MEXT Grant-in-Aid for Young
Scientists (A).
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1.  Introduction 
Recent research on biomedical signal processing especially ECG analysis mostly focused on 
the use of Hidden Markov Models (HMM). The general aim of any signal segmentation 
method is to partition a given signal into consecutive regions of interest. In the context of the 
ECG then, the role of segmentation is to determine as accurately as possible the onset and 
offset boundaries, as well as the peak locations, of the various waveform features, such that 
the ECG interval measurements may be computed automatically and the study of waveform 
patterns will be facilitated (Sayadi & Shamsollahi, 2009). Ad hoc algorithms have been 
developed in order to help cardiologists to segment large amounts of ECGs. But these 
algorithms do not provide a precise segmentation, and repetitive corrections have to be 
made. Wavelet parametrisation is known to highlight discontinuities in the signal, and has 
proven to give good results for ECG segmentation (Kawaja et al., 2006; Thomas et al., 2006). 
A statistical model helps to regularize the detection, resulting in a more robust delineation. 
One of the advantages of probabilistic models over traditional methods is that a confidence 
measure for each segmented signal is given by the log likelihood of the observed signal 
given the model (Thomas et al., 2006). 
The main focus of this chapter is to introduce some new and robust HMM associated with 
wavelet transform based methods for ECG analysis. The chapter begins with a review of the 
literature on the use of HMM to analyse ECG signals. We then consider in detail the suitability 
of HMM to provide a faithful statistical description of the ECG. In particular, we examine the 
validity of the various assumptions inherent in the HMM framework in the context of the 
ECG. Following this, we consider a number of specific issues in developing an HMM for ECG 
segmentation, including the choice of model architecture, type of observation models. Then a 
combination of HMM approach with wavelet properties will be explained. 

1.1 Previous works 
The use of hidden semi-Markov models (HSMM) for ECG segmentation has been 
considered previously in (Thoraval et al. 1994), the segmentation process is effected by an 
HSMM, where each state in the model corresponds to a particular aspect of a given ECG 
waveform feature. Specifically, the model architecture makes use of separate onset, middle 
and offset states for each waveform feature. This enhanced state space is motivated by the 
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need to match the stationarity assumption for each HSMM state, with the transitory nature 
of the observations over the time course of a particular ECG waveform. The observation and 
duration densities for the HSMM are modelled by Gaussians (with diagonal covariance 
matrices in the specific case of the observations). The performance of the model is 
demonstrated qualitatively on a sample ECG waveform (Hughes, 2006).  
Wavelets and statistical methods can be used complementarily for ECG delineation, as 
reported previously in (Clavier et al., 1998, 2002), to associate a local and a global 
segmentation. Hidden Markov models (HMM), are applied to the coefficients of an ECG 
wavelet transform. This transform also showed the signal singularities, but it was too 
sensitive to noise. The association of the two methods made it possible to solve cases where 
they would fail if they were used alone. The ECG was segmented in three steps: first, a 
redundant multiresolution analysis was applied to the ECG signal; secondly, the R-wave 
was detected by a threshold on the wavelet coefficients; thirdly, a segmentation algorithm 
based on an HMM representing a beat was applied to isolate the P wave. The observations 
were the wavelet coefficients, whose probability densities were estimated by a non-
parametric model. 
Lepage et al., 2000, have presented a HMM associated with wavelets to improve an 
automatic segmentation of the ECG signal. While HMM describes the dynamical mean 
evolution of cardiac cycle, the use of wavelet analysis in association with the HMM leads to 
take into account local singularities. The parameters of this HMM model (means, variances 
and transition probabilities) are estimated using EM algorithm by modifying the parameter 
estimation by using the stochastic expectation maximisation algorithm (SEM) instead of the 
EM which avoids staying in local minima. Some good results were obtained at several 
scales, showing the good localization properties of wavelet, but the results were not as 
reliable as those obtained with the 10 state HMM method. It is sometimes really difficult to 
choose the coefficient that represents the beginning, the middle or the end of a wave, when 
the changes of state are too close or too numerous.  
Graja &Boucher, 2005, have proposed a new ECG delineation method which uses a hidden 
Markov tree (HMT) model. Using wavelet coefficients to characterize the different ECG 
waves and, then linking these coefficients by a tree structure enabling wave change to be 
detected. The idea is to develop probability models for the wavelet transform of a signal and 
to analyze the dependency of wavelet coefficients through scales. In fact, it is well-known 
that wavelet coefficients have a non-Gaussian distribution. Making the assumption that it 
can be described by a mixture of Gaussian distributions. To pick up the relationships 
between states, they use a HMM on a wavelet tree with a hypothesis of clustering and 
persistence (Crouse et al., 1998).  
Thomas et al., 2006, have used machine learning approach to ECG segmentation consists in 
building a model λ of the signal, and in using the most likely state sequence for a given 
observation sequence in order to find the wave transitions. To be able to segment 
unspecified ECGs with high accuracy, they implemented a multi-HMM approach. This 
method consists in performing a Bayesian clustering of the training base (Li, & Biswas, 
2000). The training base is divided in K classes of ECGs which have similarities and K HMM 
are trained and exploited to provide great generalization capabilities and high accuracy at 
the same time. This HMM clustering algorithm is simply a variation of the K-Means 
algorithm, where the clusters are defined by HMM rather than by centers in the data space 
(Thomas et al., 2007). 
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Online HMM adaptation for ECG analysis has been successfully carried out by Müler et al., 
2006, they have introduced the online HMM adaptation for the patient ECG signal 
adaptation problem. Two adaptive methods were implemented, namely the incremental 
version of the expectation maximization (EM) and segmental k-means algorithms. The 
system is adapted to the ECG of the individual in an unsupervised way. For that, the 
segmentation output is used to reestimate the HMM parameters of each waveform.  
Andreão et al., 2007, have presented an original HMM approach for online beat 
segmentation. The HMM framework is highly suitable for the ECG problem. This approach 
addresses a large panel of topics like : waveforms modelling, multichannel beat 
segmentation and classification, and unsupervised adaptation to the patient’s ECG. The 
segmentation task is carried out by generic HMM of each beat waveform. One important 
feature of this approach is the generic model adaptation strategy to each individual, which 
is non supervised (there is no need of manual labels). The HMM are used to carry out beat 
detection and segmentation. The main contributions are based on the following (Andreão et 
al. 2003, 2004, 2006). Firstly, waveform modelling (and not beat modelling) using generic 
HMM (trained through examples from several individuals). In this way, HMM are trained 
taking into account the morphology diversity of each waveform. Secondly, better waveform 
segmentation precision by adapting a generic model to each individual. The model 
adaptation is done in an unsupervised way, eliminating waveform manual labelling 
(Laguna et al., 1997). 

1.2 Contributions and chapter organization 
In our works, we have developed three original hybrid segmentation algorithms based on : 
Firstly, Modulus Maxima Wavelet Transform (MMWT) that has been successfully combined 
with Hidden Markov Models (HMM) providing reliable beat segmentation results (Krimi et 
al. 2008). In the MMWT, the wavelet transform local extrema is used to characterize 
singularities in the signal. One very successful method described in (Cuiwei et al., 1995), 
uses the ECG wavelet transform modulus maxima properties to characterize the different 
ECG complexes. A rule based system is used to detect QRS waves and differentiate them 
from T waves and noise artifacts. This method has also been extended for T and P wave’s 
detection (Jouck, 2004). 
Secondly, Pitch Synchronous Wavelet Transform (PSWT) and Hidden Semi-Markov Models 
(HSMM) (Krimi et al., 2007). The combination of these two methods has shown to be very 
efficient tool for ECG delineation. As noted in other studies on the HMM, the self transitions 
of the HMM cause an incorrect modelling of segment durations. An extension of the HMM, 
the Hidden Semi Markov model HSMM, largely solves this problem. PSWT, has been 
effectively used in speech, music signals (Evangelista, 1993) and waveform interpolation 
coding scheme (Chong et al., 2000). The (PSWT) is based on a modelling concept, which is 
able to capture period to period signal fluctuation by basis elements means that are comb-
like in the frequency domain. This technique relies primarily on the high peaks positions 
corresponding to the ECG R wave. The principle consists in estimating the periodicity (pitch 
period) with the autocorrelation function and dividing the original signal into pseudo-
periodic segments using the time points obtained from the considered pitch detector 
algorithm; this segmentation leads to the pitch synchronous representation. By applying the 
wavelet transform to this representation and synthesis only the approximation component 
we can obtain the dominating pitched signal's behaviour, so the ECG estimation. 
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Thirdly (in progress), Multiscale Product Wavelet Transform (MPWT) in association with 
Hidden Markov Tree (HMT). The idea of this study is to detect singularity not via local 
maxima of the wavelet coefficients signals but via the product of the wavelet coefficients. 
Rosenfeld and co-workers (Rosenfeld, 1970) suggested forming multiscale point-wise 
products. This is intended to enhance multiscale peaks due to edges, while suppressing 
noise, by exploiting the multiscale correlation due to the presence of the desired signal 
(Besrour & al., 2009). MPWT is based on Mallat's and Hwang's approach (Mallat & Hwang, 
1992) for singularity detection via local maxima of the wavelet coefficients signals. It acted 
as the parameter extraction stage necessary to build the observation sequence of our original 
HMT based segmentation approach.  

2. Background information 
This section provides a brief review of Hidden Markov Models (HMM), Hidden Markov 
Tree (HMT) and Hidden Semi-Markov Models (HSMM). 

2.1 Hidden Markov Models (HMM)  
To model a sequence 1 2, ,..., TW w w w= ; with t Nw ∈\ , a continuous HMM is defined with 
the structure , , ,Q A Bπϑ = where (Milone et al., 2010) :  
i. { }Q Q= is the set of states, where Q is a discrete random state variable taking 

values { }1, 2, ..., QNq∈  

ii. ijA a= ⎡ ⎤⎣ ⎦ is the matrix of transition probabilities with ( )1|Pr ,tt
ij Q j Q ia i j Q−

= == ∀ ∈ , where 
tQ Q∈ is the model state at time { }1,2,...,t T∈ , 0 ,ija i j≥ ∀ and 1ijj

a i= ∀∑  

iii. ( )1Prj Q jπ π= = =⎡ ⎤⎣ ⎦ is the initial state probability vector. In the case of left to right 

HMM this vector is 1π δ=  

iv. ( ){ }t
kB b w= is the set of observation (or emission) probability 

distributions ( ) ( )Pr |t t t t
kb w W w Q k k Q= = = ∀ ∈  

Assuming a first order Markov process and the statistical independence of the observations, 
the HMM likelihood can be defined using the probability of the observed data given the 
model:  

 ( ) ( ) ( )1, t t t
t

q q q
q q t

L W L W q a b wϑ ϑ −

∀ ∀

= ∑ ∑∏�  (1) 

where q∀  stands for over all possible state sequences 1 2, ,..., Tq q q q Q= ∈ and 01 1 1a π= = .  
To simplify the notation, we will indicate ( )Pr |t tw q as equivalent to ( )|Pr t tt tQ qW w= = or in 
a similar way ( ) ( )1 1 1Pr | Pr |t t t t t tq q Q q Q q− − −≡ = =    
The EM algorithm is the most widely used way to maximize this likelihood (Duda et al., 
2001). The forward–backward algorithm provides an efficient method for the expectation 
step (Baum et al., 1970) . The expected values for the state probabilities in ϑ can be 
calculated with the recursions  
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 ( ) ( ) ( ) ( )1 1Pr ,..., , |t t t t t
j ij

i
j w w q j b w i aα ϑ α −= = ∑�  (2) 

 ( ) ( ) ( ) ( )1 1 1Pr ,..., , |t t T t t t
jk k

k
j w w q j a b w kβ ϑ β+ + += =∑�  (3) 

Initialized with ( ) ( )1 1
i ii b w iα π= ∀ and ( ) 1T k kβ = ∀ . Then, the probability of being in state i at 

time t is  

 ( ) ( ) ( ) ( )
( ) ( )

Pr | ,
t t

t t
t t

i

i i
i q j W

i i
α β

γ ϑ
α β

= =
∑

�  (4) 

And the probability of being in state i at time t-1, and in state j at time t is  

 ( ) ( ) ( ) ( ) ( )
( ) ( )

1
1, Pr , | ,

t t t
ij jt t t
t t

i

i a b w j
i j q i q j W

i i

α β
ξ ϑ

α β

−
− = = =

∑
�  (5) 

The learning rules can be obtained by maximizing the likelihood of the data as a function of 
the model parameters (Huang et al., 1990). Thus, the transition probabilities can be 
estimated with 

 
( )
( )
,t

t
ij t

t

i j
a

i
ξ

γ
= ∑
∑

 (6) 

These equations can be easily extended for training from multiple observation sequences 
(Liporace, 1982).  
The corresponding learning rules for the parameters of the observation distributions are 
dependent on the chosen model for ( )t

kb w . 

2.2 Hidden Markov Tree (HMT) 
Let 1 2, ,..., NW w w w⎡ ⎤= ⎣ ⎦ be the concatenation of the wavelet coefficients obtained after 

performing a DWT with J scales, without including w0, the approximation coefficient at the 
coarsest scale. Therefore, 2 1JN = − . The HMT can be defined with the 
structure , , , ,U Fθ π ε= ℜ  , where (Milone et al., 2010) : 

i. { }U u= with { }1,2,...,u N∈ , is the set of nodes in the tree. 

ii. uu
ℜ = ℜ∪ is the set of states in all the nodes of the tree, denoting with { }u uRℜ = the set 

of discrete random state variables in the node u, and uR taking values { }1,2,...,ur M∈  

iii. ,u mnε ε⎡ ⎤= ⎣ ⎦ with ( )( ) ( ), Pr ,| ,u mn u uu uR m R n m nρ ρε = = = ∀ ∈ℜ ∀ ∈ℜ is the array whose 

elements hold the conditional probability of node u, being in state m, given that the 
state in its parent node ( )uρ is n and satisfy , 1u mnmε =∑  
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iv. ρπ π⎡ ⎤= ⎣ ⎦ with ( )1 1Pr R p pρπ = = ∀ ∈ℜ  the probabilities fort he root node being on state p. 

v. ( ){ },u m uF f w= are the observation probability distributions, with 

( ) ( ), Pr |u m u u u uf w W w R m= = =  the probability of observing the wavelet coefficient 

uw with the state m (in the node u). 
Additionally, the following notation will be used :  
• ( ) ( ) ( ){ }1 , ...,

uNC u c u c u= is the set of children of the node u. 
• uΤ is the subtree observed from the node u (including all its descendants). 
• \u vΤ is the subtree from node u but excluding node v and all its descendants.  

As in the sequence q for HMM, we will use the notation 1 2[ , ,..., ]Nr r r r= to refer a particular 
combination of hidden states in the HMT nodes. 
Assuming that the following three basic properties in the HMT are true : 

1. { }( ) ( ){ }( )1 2( ) ( ) ( )Pr | / Pr | , , ,...,
Nu

u v u c u c u c uur m r v u r m r r r rρ= ≠ = =  

the Markovian dependencies for trees 
2. ( ) ( )Pr | Pr |uu

W r w r=∏ the statistical independence of the observed data given the 
hidden states 

3. ( ) ( )Pr | Pr |uuu uw r w r=∏ the statistical independence of the observed coefficient in node 
u to the states in the other nodes of the tree and using the standard definition 

( ) ( ), Pr , |L w r w rθ θ�  the HMT likelihood is 

 ( ) ( ) ( )( ), , ,u u u u u u
r r u

L w L w r r r f r wθ θ ρε
∀ ∀

=∑ ∑∏�  (7) 

where r∀ means that we include all the possible combinations of hidden states in the tree 
nodes and

11 1 (1), rr rρε π=   
For the computation of the expected values in the EM algorithm, the upward–downward 
recursions are used, in a similar way than the forward–backward ones in HMM. For this 
algorithm the following quantities are defined (Ronen et al., 1995) : 

 ( ) ( )1\Pr , |u u un T r nα θ=�  (8) 

 ( ) ( )Pr | ,u u un T r nβ θ=�  (9) 

 ( ) ( )( ), ( )Pr | ,u u u un T r nρ ρβ θ=�  (10) 

In the upward step the β quantities are computed as  

 ( ) ( ) ( )
( )

, ,u u n u u u mn
v C u

n f w mβ β ε
∈

= ∏  (11) 

Initialized with ( ) ( ),u u n un f w uβ = ∀ in the finest scale. Then, ( )( ),u u nρβ is computed and the 
iterative process follows in the previous level, in an upward inductive tree traversal. 
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When the upward step reaches the root node, the downward step computes 

 ( ) ( ), ( )

( ),

( ) ( )

( )
uu nm u

u
u um

m m
n

m
ρρ

ρ

ε β α
α

β
=∑  (12) 

Starting from ( ) ( )1 1Pr | mm r mα θ π= = = . The other two useful quantities are the probability 
of being in state m of node u 

 ( ) ( ) ( ) ( )Pr | ,
( ) ( )

u u
u u

u un

m mm r m w
n n

α βγ θ
α β

= =
∑

�  (13) 

And the probability of being in state m at node u, and the state n at its parent node ( )uρ  

 ( ) , ( ) ( ) ( ),
( )

( ) ( ) ( ) / ( )
( , ) Pr , | ,

( ) ( )
u u mn u u u u

u u u
u un

m n n n
m n r m r n w

n n
ρ ρ ρ

ρ

β ε α β β
ξ θ

α β
= = =

∑
�  (14) 

If we consider the maximization for multiple observations { }1 2, , ..., LW w w w= , with Nw∈\ , 

the conditional probabilities ,u mnε can be estimated from ,

( )

( , )

( )

l
ul

u mn l
ul

m n

nρ

ξ
ε

γ
=
∑
∑

  and using a normal 

distribution for the observation probability distributions 

 
( )2,

, 2
,

1 1( ) exp
22

u

u

u

u u r
u r u

u r

w
f w

μ

πσ σ

⎛ ⎞−⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

 (15) 

We have (Crouse, et al., 1998) 

 ,
( )

( )
( )

l l
u ul

u m u l
ul

w m
w

m

γ
μ

γ
= ∑
∑

 (16) 

 
( )2,2

,

( )

( )

l l
u u m ul

u m l
ul

w m

m

μ γ
σ

γ

−
=
∑

∑
 (17) 

2.3 Hidden Semi-Markov Models (HSMM) 
A HSMM consists of a pair of discrete-time stochastic processes { }tS and{ }tX . Similar to 
HMM, the observed process{ }

t
X is related to the unobserved semi-Markovian state 

process{ }tS by the so-called conditional distributions (Bulla et al., 2010). 
Let ( )1

1: , ...,T TX X X= denote the observed sequence of length T. The same convention is used 
for the state sequence tS , andθ denotes the set of model parameters. The state process is a 
finite-state semi-Markov chain, which is constructed as follows. A homogeneous Markov 
chain with J states, labelled 1,…,J models the transitions between different states. 
The stochastic process{ }tS is specified by the initial probabilities ( )

1
:

j
P S jπ == with : 
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1jj
π =∑ and the transition probabilities ijp . For states { }1,...,, Ji j∈ with j i≠ , these are given 

by 

 ( )1 1: | ,ij t t tp P S j S i S i+ += = ≠ =  (18) 

Satisfying 1ijj
p =∑ and 0iip = . The diagonal elements of the transition probability matrix 

(TPM) of a HSMM are required to be zero, since we separately model the run length 
distribution and do not consider the case of absorbing states. This distribution, also referred 
to as sojourn time distribution, is associated with each state. It models the duration the 
process{ }tS remains in the state j and is defined by 

 ( ) ( )1 2 1: | ,..., | ,j t u t u t t tP S j S S j Sd u j j S j+ + + + += =≠ = = ≠  (19) 

The combination of a Markov chain, modelling state changes, and runlength distributions, 
determining the sojourn times in the states, define{ }tS and illustrate the main difference 
between the HMM and the HSMM. The semi-Markovian state process{ }tS of a HSMM does 
not have the Markov property at each time t, but is Markovian at the times of state changes 
only. 
The observed process{ }

t
X at time t is related to the state process{ }tS by the conditional 

distributions ( )j tb x , which are either probability functions in the case of discrete conditional 
distributions or probability densities in the case of continuous conditional distributions : 

 ( ) ( )
( )

|

|j
t t t t

t
t t t t

P X S

X S

x j for discrete X
b x

f x j for continuous X
=

= =⎧⎪
⎨

= =⎪⎩
 (20) 

For the observation component, the so-called conditional independence property is fulfilled: 

 ( ) ( )1 1 1 1
1 1 1 1| ,..., , , |t t T T

t t T T t t t t t tP X S sX x x S j S s P X x S j− −
+ +== = = = = = =  (21) 

That is, the output process at time t depends only on the value of St . 

3. Proposed ECG segmentation techniques 
3.1 Modulus maxima wavelet transforms and hidden Markov models based method 
This technique is based on the combination of two mathematical techniques namely the 
Wavelet Transform (WT) and Hidden Markov Models (HMM). In this method, we first 
localize edges in the ECG by wavelet coefficients, then, features extracted from the edges 
serve as input for the HMM. This new approach was tested and evaluated on the manually 
annotated database QT database (Laguna & al., 1997), which is regarded as a very important 
benchmark for ECG analysis. We obtained a sensitivity Se= 99,40% for QRS detection and a 
sensitivity Se= 94,65% for T wave detection. 

3.1.1 Modulus maxima wavelet transforms 
The modulus maximum describe any point u0, s0 such that the 

0
( )sW f u is locally maximum 

at u = u0. This implies that (Chen, 2006) 
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 0
0

( )
0S

u u
W f u

u =

∂
=

∂
 (22) 

When the WT is at fine scale, singularities are detected by finding the abscissa where the 
wavelet modulus maxima converge (Mallat & Hwang, 1992). The zero-crossings of the WT, 
which is also at fine scale, correspond to the maxima or minima of the smoothed uniphase 
signal (Mallat, 1991). 

 *1( ) ( ) ( )s
t uW f u f t dt

ss

+∞

−∞

−
= Ψ∫  (23) 

The singularities in the arrhythmia waveform can be conveniently detected by employing 
wavelet transform (WT). WT of a function f is a convolution product of the time series with 
the scaled and translated kernel Ψ , and is given by (Strang & Nguyen, 1996) : 

 
0

0
,

1( ) ( ) ( )s u
u uW f f x dx

s s

+∞

−∞

−
= Ψ∫  (24) 

 0
0

( )
, ( ) h u

s uW f sα   0s +→  (25) 

Where s is the scale parameter and u0 is the translation parameter. The ability of WT to 
reveal even the weaker singularities within the time series by adjusting s makes it an 
indispensable tool for singularity analysis. 
The continuous WT described in Equation (24) is an extremely redundant and a 
computationally expensive representation. The wavelet transform modulus maxima 
(WTMM) method (Hwang, 1994) changes the continuous sum over space into a discrete sum 
by taking the local maxima of 

0, ( )s uW f considered as a function of u . An important feature 

of these maxima lines is that, each time the analyzed signal has a local Hölder exponent 
0( )h u less than the analyzing wavelet, there is at least one maxima line pointing toward 0u  

along which Equation (25) holds (Arneodo, 1995, Joshi, 2006).  

3.1.2 Selecting edge localization 
First, In the WTMM (Mallat, 1999), the WT local extrema is used to characterize singularities 
in the signal. One very successful method described in (Cuiwei et al., 1995), uses the ECG 
wavelet transform modulus maxima properties to characterize the different ECG complexes. 
A rule based system is used to detect QRS waves and differentiate them from T waves and 
noise artifacts. This method has also been extended for T and P wave’s detection (Jouck, 
2004). In the ECG substantial information is carried in the peaks, so if we want to use a 
segment model, it would be preferable to model a segment around the ECG peaks. The 
rising and falling edges in a signal can be easily identified by the WT coefficients.  
A positive modulus maximum corresponds to a rising edge and a modulus maxima 
corresponds to a falling edge. The modulus maximum alone do not provide sufficient 
information to determine the edge onset and offset. When the analyzing wavelet is the 
derivative of a smoothing function ( )uθ , the wavelet transform can be interpreted as the 
derivative of the original signal ( )f u smoothed by ( )uθ .  
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As the zero crossings of ( ),Wf u s correspond to zero crossings of ( )df u du  - the derivative 
of ( )f u - a rising or falling edge onset and offset can be derived from the zero crossings 
in ( ),Wf u s .So, by determining the modulus maxima locations and the zero crossing near the 
modulus maxima, the onset and offset as well as the point of inflection of an edge can be 
determined. The area between the ECG onset and offset is characterized by constant sign 
wavelet coefficients - either all positive or all negative. The scale selection u , determines the 
resolution details of ( )f u that are visible in the ( ),Wf u s , and thus also the edges resolutions 
that can be detected. When only coarse scales are selected, only coarse details of ( )f u are 
detectable. When only fine scales are selected, the fast varying details of ( )f u are visible. As 
fine scales give a better time-resolution, it would be preferable to use fine scales to more 
precisely determine the edge onset and offset. 
However, ECG signals are often subject to high frequency noise, and at small scales this 
noise distorts the wavelet transform. So, we want to select scales such that the ECG peaks 
oscillations are visible in the wavelet transform, but not so small that the noise in the signal 
becomes too dominant in the wavelet transform. From empirical tests, it became apparent 
that selecting only one scale to detect edges did not suffice. The edges resolutions make up 
the ECG peaks are too broad to be captured by one scale WT. Therefore it is necessary to use 
multiple scales to detect edges. Unfortunately, it is not guaranteed, that if the wavelet 
coefficients at one scale have constant sign in one area, that the wavelet coefficients in that 
area on another scale also have constant sign. In order to deal with this, the area in which an 
edge of ( )f u is localized is determined as follows :  
We selected two scales that respond well to the edges time-frequency resolution that make 
up the ECG peaks. The finest of the two scales has the best time resolution to determine the 
edges onset and offset, but the high frequency noise in the ECG is also visible at this scale. In 
the wavelet coefficients on the more coarse scale, noise is less dominant, but some time 
resolution is lost. Therefore the wavelet transform at both scales is combined to detect edges. 
An edge is only detected, when in a certain signal ( ,..., )t t df u u + area, wavelet coefficients on 
both scales ( ,..., , )t t dWf u u s+ have the same sign. 

3.1.3 ECG edges localisation as HMM front end 
The edges in the ECG are localized and features extracted from the edges serve as input for the 
HMM. The Viterbi algorithm for the HMM (Koski, 1996) can be interpreted as a search in the 
model state-time space. In the optimal solution search, states are assigned to observations to 
maximize the likelihood function. In other words, segments are modelled around observations 
that have a high probability to belong to a certain state when a Gaussian mixture model is 
used to model the observation probabilities (the wavelet coefficients). It is known that 
important information about the signal is carried in the wavelet transform modulus maxima. 
This information can improve discrimination between the ECG characteristics. The problem is 
that in the Viterbi algorithm the whole signal is searched, and that in some search areas no 
modulus maxima are present. For this reason it is hard to model the modulus maxima 
information into the probability calculations for the HMM observations.  
This problem can be solved if only parts of the signal where modulus maxima are present 
are processed. In the edge wavelet transform at least one modulus maxima must be present. 
The segment is modelled from one zero crossing in the one scale wavelet coefficients the 
next zero crossing. Somewhere between the zero crossings we must have an inflection point, 
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where the wavelet coefficients change direction (from rising to falling or vice versa), 
otherwise all wavelet coefficients in the segment would have to be zero. So, when a segment 
has been localized, further information from the wavelet coefficients in the segment can be 
extracted. This information is then used as an observation for the HMM. In contrast to the 
previous Markov models implementation, the observations no longer correspond to an ECG 
time sample, but an ECG segment time. 

3.1.4 Experiments and results 
In order to evaluate our performance method for ECG delineation, we use a standard QT 
database (Laguna & al., 1997). This is a manually annotated database, consisting of 105 
records, two leads each. The records contain both automatic and manual annotations. The 
automatic annotations are available for the whole signal; the manual annotations are made 
for 30 to 100 beats for each record. In the tests performed, only the manual annotations are 
used as a reference. Not all records are used in the evaluation, some records have no T peak 
annotation or normal beat annotations, these records have been excluded. To asses the 
detection performance of the different waves we calculated the sensitivity Se and the 
positive predictivity P+ of several events. In the QT database, when a QRSpeak is annotated, 
the rest of the beat is also annotated (at least the QRSon and QRSoff and the Tpeak and Tend). 
Therefore, the P+ can only be calculated for other events then the QRSpeak. In an annotated 
beat, each absent manual annotation in the automatic detection neighbourhood can be 
considered as a false positive. Therefore, the wave detection rates are calculated as follows : 
a true positive is calculated for the QRS complex and the T wave, when at the annotated 
QRSpeak or Tpeak the HMM of our method is in the QRS or T state respectively. When this is 
not the case, a false negative is recorded. For our method there are several states that relate 
to the QRS complex and T wave. The states related to the QRS complex are the 
states{ }, , ,Q R S RST ,those related to the T wave are the states{ }1 2, ,T T RST . The { }RST  state 
models a weak transition from the QRS complex to the T wave, therefore both the QRS 
complex and the T wave are associated with this state. As argued above, the P+ can not be 
computed for QRS detection, but this can be computed for the QRS complex onset QRSon, 
and the T wave offset Toff. For these events the Se and P+ are calculated, as well as the mean 
(m) and the standard deviation (s) of the time differences between the cardiologist and 
automatic annotations. Furthermore, for the beats annotated by the cardiologist in the QT 
database, the QT time mean and standard deviation of these beats is measured manQTt. The 
mean and standard deviation of the time difference between the manual and automatic QT 
times is measures as εQTt. These differ from the errors of QRSon and Toff, as they are 
calculated over all manual annotations and all automatic annotations. The proposed method 
is only trained on the whole concatenated test set and not on individual records. The results 
are shown in Table 1.  
In this method only parts of the ECG signal that are detected by the edge localization 
method can be classified. As a consequence, when an edge is not detected when it should be, 
this part of the signal is always misclassified. Furthermore, the edge detection algorithm 
determines the edges onset and offset. The results of the Toff error mean show a positive bias 
(45ms). This means that most edges related to the T-wave are truncated too late in 
comparison to the cardiologist’s annotations. Edges are truncated, when at the finest scale, 
the wavelet coefficients change sign. This is a very simple and straight forward approach, 
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Parameter QRS QRSon T Toff manQTt εQTt 
Se (%) 99,40 95,34 94,65 86,16 - - 
P+ (%) - 90,75 - 83,56 - - 
m(ms) - -5,80 - 45 422,10 38 
s (ms) - 31,10 - 77,30 72,20 74,3 

# annotations 3473 3473 3512 3512 - - 

Table 1. WTMM and HMM based method detection results 
but unfortunately, often this does not concur with the cardiologists annotations. A possible 
solution to this is to truncate an edge sooner. For instance by using an even finer wavelet 
scale, or by truncating an edge when the wavelet coefficients cross at a certain threshold 
value, instead of zero. It should be noted, that these measures might increase Toff delineation 
precision (m and s) and the Toff sensitivity Se , but they would have little impact on detection 
rates (T sensitivity). Our HMM topology is able to model a great variety of ECG 
morphologies. Still, there are many different topologies possible, which may improve 
performance. This is an elementary problem in hidden Markov modelling; the topology and 
some of the model parameters are determined by experimentation and thus most likely to 
be suboptimal. The HMM model used has more states than annotated events present in the 
database. This is because some ECG waveforms are segmented more precise then in the 
manual annotations. As a result, it is hard to calculate the right parameters for the states 
related to the segments that are not annotated explicitly in the database. The obvious 
solution is to annotate the database more precisely, but this is a time consuming and 
expensive job. The resulting parameters can still not be proved to be optimal, and another 
HMM topology might be required, which would issue another database annotation. For this 
reason some of the states share parameters, these are the parameters that can be easily 
extracted from the database. The segment features that have been chosen as observations for 
the proposed HMM have shown to be discriminative between states.  

3.2 Pitch synchronous wavelet transform and hidden semi-Markov models based 
method 
In this technique we develop a new approach to ECG analysis, combining Pitch 
Synchronous Wavelet Transform (PSWT) and Hidden Semi-Markov Model (HSMM) for 
tracking the typical ECG cycle. The combination of these two techniques was examined in a 
way that the PSWT of an ECG signal was an input for the HSMM. This approach was tested 
and evaluated on the manually annotated QT database.  Experimental results show the 
accuracy of the proposed technique for all corrupted ECG tested reaching a sensitivity 
Se=99,95% for QRS detection and Se=97,79% for T detection. 

3.2.1 Pitch synchronous wavelet transform 
The Pitch Synchronous Wavelet Transform (PSWT) is developed as an extension of the 
wavelet transform that is suitable for pseudo periodic signals like speech signals; 
electroencephalogram (EEG) signals; seismic signals and so more. Electrocardiogram (ECG) 
signals, i.e. heartbeat signals, exhibit pseudo-periodic behaviour. Nearby pulses are very 
similar in shape, but of course various evolutionary changes in the behaviour are medically 
significant (Goodwin, 1997). 
PSWT is a periodic and pseudo periodic signals decomposition approach. It is based on a 
pitch synchronous technique which leads to convert the signal into a whole of vectors 
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having variable length and to apply thereafter to the sequence obtained a traditional 
wavelet transform. This shows its capacity on one hand to analyze according to a periodic 
approach and on several scales the signals with periodic behaviour and on the other hand to 
take account of signal variabilities period per period (Evangelista, 1995) 
A pseudo-periodic signal x[n] is first converted into a sequence [ ] { [ ]}qv k v k= of variable length 
vector [ ]qv k , each containing the sample of one period signal. The indexes 0, ..., [ ] 1q p k= − and k 
are respectively the inter-period and the period count index and [ ]p k is a sequence of 
integer local pitch periods extracted from x[n]. Based on this representation the sequences of 
components are, then, analysed by means of an array of wavelet transform. Given a set of 
decomposition levels 1, 2, ...,l L= , the pitch synchronous wavelet expansion of the signal x[n] 
is defined by the following sum : 

 1
[ ] [ ] [ ]

L

l L
l

x n w n r n
=
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Where the scaling residue (estimation) [ ]Lr n represents the average behaviour of [ ]x n while 
the partial (details) [ ]Lw n represents the fluctuations at scale 2L local periods. In the 
transform domain the scaling residue and the partial are represented by the expressions : 
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Where , , [ ]l m q nξ , , , [ ]L m q nϑ  (m,q integers adapted to the periodicity of the signal [ ]x n ), 

, ,L m qσ and , ,l m qS represent a finite scale pitch synchronous wavelet, L level scaling sequences 
and the expansion coefficients, respectively (Elloumi et al., 2004).  

3.2.2 Pitch synchronous wavelet transform as HSMM front end 
The PSWT coefficients can be employed as a front end to a Markov Model as individual 
samples (the normal HMM) or as a segment of samples (the HSMM or Segmental Markov 
Model). In the sample based model, a state transition is made at each time step, and the 
occurrence probability of a given state is calculated from one observation tO - that 
represents the wavelet coefficients from one time-sample ( , )uW t s - In the segment based 
model, a state transition is made only after a certain number of time steps, d, and the 
probability for a state is calculated from multiple observations ...t t dO O + - that represent 
multiple pitch synchronous wavelet coefficients, ( ... , )uW t t d a+ - In the HSMM, the 
probability of the segment observations ( ),...,t t dP O O + , is calculated as the product of the 
individual observations that make up the segment, as if they where independent identically 
distributed observations. 

3.2.3 Experiments and results 
The results of our method trained on individual records of the test database are 
considerably high. There are only a small number of records who fail good detection. 
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Record sel36, has the worst detection rate. This record has a rhythm of one or two normal 
beats followed by PVC (Premature Ventricular Contraction). As a result, the durations of the 
QRS complexes that are recorded are divided into two clusters : One for the normal QRS 
complexes that have a relatively short duration, and one for the PVC’s that have a long 
duration. From the sensibility Se and the positive predictivity P+ values, we can gather that 
there are slightly more false positives than false negatives. This may be a disadvantage for 
applications in which we need to be sure that only QRS complexes are detected. It may be 
possible to change this relation by changing parameters in our future work analysis. This 
extensive model which models the ECG waveforms more accurate might improve detection 
rates. The results shown in Table 2 are considerably high. There are only a small number of 
records who fail good detection, Se=99,95% and P+=97,39% for QRSon and Se=95,68% and 
P+=96,57% for Toff. 
 

Parameter QRS QRSon T Toff manQTt εQTt 
Se (%) 99,95 99,95 97,79 95,68 - - 
P+ (%) - 97,39 - 96,57 - - 
m(ms) - 9,95 - 0,76 408,8 -9,7 
s (ms) - 7,2 - 22,7 52,1 14,1 

# annotations 2093 2093 2131 2131 - - 

Table 2. PSWT and HSMM based method detection results 

3.3 Multiscale product wavelet transform and hidden Markov tree based method  
3.3.1 Multiscale product wavelet transform 
The WT is a multi-scale analysis which has been shown to be very well suited for speech 
processing as Glottal Closure Instant (GCI) detection, pitch estimation, speech enhancement 
and recognition and so on. Moreover, a speech signal can be analysed at specific scales 
corresponding to the range of human speech (Berman & Baras 1993, Kadambe, 1992). (Witkin, 
1981) provided the foundation for scale space theory by generalizing Rosenfeld’s work 
(Rosenfeld, 1970), in which smoothing filters at dyadic scales were used. Based essentially on 
forming multiscale products of smoothed gradient estimates, this approach attempts to 
enhance the peaks of the gradients caused by true edges, while suppressing false peaks due to 
noise. The wavelet transform acts as an edge detector, and the detail coefficients should be 
equivalent to the estimated gradients. This method was first used in image processing (Xu et 
al., 1994) rely on the variations in the WT decomposition level. They use multiplication of WT 
of the image at adjacent scales to distinguish important edges from noise. Continuous WT 
produces modulus maxima at signal singularities allowing their localisation. However, one-
scale analysis is not accurate. So, decision algorithm using multiple scales is proposed by 
different works to circumvent this problem (Bouzid & Ellouze, 2007, 2009). 
So if the wavelet is chosen to have one vanishing moment, modulus maxima appear at 
discontinuities of the signal and represent the maxima of the first derivative of the smoothed 
signal. The MP (Sadler & Swami, 1999) consists of making the product of wavelet transform 
coefficients of the function f(n) at some successive dyadic scales as follows 

 2( ) ( )j

j
p n w f n=∏  (29) 
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Where 2 ( )jw f n is the wavelet transform of the function ( )f n at scale 2j. 
This expression is distinctly a non linear function. The product p(n) reveals peaks at signal 
edges, and has relatively small values elsewhere. Singularities produce cross-scale peaks in 
wavelet transform coefficients, these peaks are reinforced by the product p(n). Although 
particular smoothing levels may not be optimal, the non linear combination tends to 
reinforce the peaks while suppressing spurious peaks. The signal peaks will align across 
scales for the first few scales, but not for all scales because increasing the amount of 
smoothing will spread the response and cause singularities separated in time to interact. 
Thus, choosing too large scales will result in misaligned peaks in p(n). An odd number of 
terms in p(n) preserves the sign of the edge (Bouzid et al., 2006). 
Motivated by the efficiency of the multiscale product in improving the edge detection, this 
method is applied on ECG signal and then can outperform the wavelet transform precision 
in weak singularity detection (Besrour et al., 2009). 

4. Conclusion and future work 
In this chapter, we have proposed some new techniques for ECG characterisation based on 
modulus maxima wavelet transform, pitch synchronous wavelet transform and in the future 
work multiscale product wavelet transform as respectively front ends of hidden Markov 
models, hidden semi-Markov models and hidden Markov tree. These innovative methods 
were then applied to the conventional QT database, according to the first method we have a 
Se= 99,40% for QRS detection and a Se= 94,65% for T wave detection. The second method 
have reached a Se=99,95% for QRS detection and a Se=97,79% for T detection. 
The combination of these techniques has shown to be very efficient tool for ECG delineation; 
the good time-frequency resolution of the wavelet transform can successfully overcome 
some of the inherent problems of the ECG signal, such as noise and baseline drift. The HMM 
Markov chain can successfully capture the structural ECG properties, such as the cyclic ECG 
characteristics occurrences. These methods have a more intuitive approach to ECG 
delineation : focusing on relevant ECG parts, that are easily distinguishable, instead of ECG 
individual samples. It can be concluded, that the results of our methods can compete with 
other published work, and is a good candidate for further development. 
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1. Introduction 
HMMs are useful tools for model-based analyses of complex behavioral and 
neurophysiological data. They make inference of unobserved parameters possible whilst 
taking into account the probabilistic nature of behavior and brain activity. The trend in 
neuroscience is to observe and manipulate brain activity in freely moving animals during 
natural behaviors and to record from several dozens of neurons at the same time. The 
richness of the data generated in such experiments constitutes a major challenge in data 
analysis, a challenge that can be addressed partly using HMMs. For example, an 
experimenter could be interested in recovering from noisy measurements of brain activity 
the underlying electrical activity of single brain cells using the constraint that activity has 
to agree with cellular biophysics (such as in the spike sorting problem). Or, the 
experimenter may want to describe the variance in some behavior and relate it to causes 
encoded in the neural recordings. We here review recent HMM applications to illustrate 
how HMMs enhance the experimental read out and provide insights into neural 
population coding. We discuss HMMs for identifying repetitive motifs in natural behaviors, 
in particular birdsong and for extracting and comparing patterns of single-neuron activity in 
multi-neuron recordings. Finally, we introduce a pair HMM for sequence alignment that is 
free of distance measures and aligns sequences by matching their self-similarities. We 
demonstrate the workings of the new pair HMM by aligning the song of a pupil bird to 
that of its tutor. 

2. General overview 
HMMs are widely applied in neuroscience research, ranging from studies of behavior, to 
neuron assemblies, and to individual ion channels. The observed variable (the output of the 
HMM) can be a test subject's decision, or an animal's motor output. In other cases, the 
observed variable is neural activity measured using electrophysiology, 
electroencephalography (EEG), magnetoencephalography (MEG), or imaging. What many 
studies have in common is the quest to identify underlying brain states that correlate with 
the measured signals. Also, many studies create the need of segmenting behavioral or 
neural sequences into recurring elements and transitions between them. 
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2.1 Decoding of neural data with HMMs 
Spike data recorded from single or multiple nerve cells (neurons) is amenable to modeling 
with HMMs. Neurons emit action potentials. These are brief and stereotyped electrical 
events that can be recorded with extracellular electrodes in behaving animals. A popular 
application of HMMs is decoding information from recorded spike data. For instance,  
Pawelzik et al. (Pawelzik, Bauer et al. 1992) used an HMM to model neuronal responses in 
the cat's visual cortex. Their model distinguishes periods of oscillatory versus stochastic 
firing. Gat and Tishby (Gat and Tishby 1993) modeled monkey cortical activity as a 
multivariate time-dependent Poisson process. The Poisson means are hidden parameters. 
The recorded spike trains were divided into small time bins in which the spike counts were 
assumed to obey a Poisson distribution with time-dependent mean rate. Gat and Tishby's 
model yielded a temporal segmentation of spike data into a sequence of 'cognitive' states, 
each with its distinguished vector of Poisson means.  Along the same lines, Radons  et al. 
(Radons, Becker et al. 1994) employed HMMs for decoding the identity of visual stimuli 
from recorded neural responses. They simultaneously recorded neuronal spiking activity 
from several neurons in the visual cortex of monkeys during presentation of different visual 
stimuli. For each stimulus, they trained an HMM on a subset of the respective trials. HMM 
outputs were formed from the neural activity of the simultaneously recorded cells, 
assuming Poisson spike statistics. After learning, the hidden states of the HMMs 
corresponded to various regimes of multi-unit activity. Radons et al. then used the trained 
HMMs to decode stimulus identity from neural responses by selecting the stimulus for 
which the HMM gives the largest likelihood for generating the neural responses. Using this 
procedure they were able to identify the presented visual stimulus with high accuracy. 
Related to these studies, several authors have investigated the idea of cell assemblies and 
their associated sequential or attractor dynamics. A state of a cell assembly is given by a 
particular pattern of activity in that assembly. States and transitions of assemblies are 
thought to bear functional relevance and can be efficiently modeled using HMMs (Gat, 
Tishby et al. 1997; Nicolelis, Fanselow et al. 1997; Rainer and Miller 2000). Thereby, insights 
can be gained into the mechanisms of neuron firing under different pharmacological 
conditions (Camproux, Saunier et al. 1996). Also, rich patterns of neural activity have been 
observed during sleep; these patterns often resemble motor-related activity during the day 
and are thought to constitute a form of replay activity. Such replay activity has, for example, 
been observed in songbirds (Dave and Margoliash 2000; Hahnloser, Kozhevnikov et al. 2002; 
Weber and Hahnloser 2007). HMMs have helped to gain insights into such activity patterns 
by segmenting them into discrete global states.  One successful method for doing this is to 
assume that for each global (hidden) state of the neuron population, neurons have renewal 
firing statistics determined by the probability density of their interspike intervals 
(Camproux, Saunier et al. 1996; Danoczy and Hahnloser 2006). By training an HMM on the 
simultaneously recorded spike trains, each model neuron learns to fire spike patterns with 
renewal statistics that can be different for each of the hidden states. Using this procedure, it 
was found that sleep-related activity in songbirds is characterized by frequent switching 
between two awake-like firing states, one in which the bird is singing, and one in which it is 
not singing  (Danoczy and Hahnloser 2006; Weber and Hahnloser 2007).  
Several authors have explored HMM based decoding of neural or nerve activity for control 
purposes, for example, to control a robot arm. Chan and Englehart (Chan and Englehart 
2005) recorded myoelectric signals from the forearm during six different kind of 
movements, represented by six hidden states in their HMM. Their goal was to infer the 
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correct arm movement (the correct hidden state) from the recorded myoelectric signal. 
Knowing the regular dynamics of limb movements, and to avoid overfitting, the authors 
constrained the transition matrix of the HMM down to a single parameter alpha, the 
probability of remaining in the same hidden state in two consecutive time steps (32 ms). All 
transitions to other states were equally probable. Emission distributions were modeled as 
Gaussians; their parameters were directly estimated from the training data. Using this 
model, Chan and Englehart reach a classification rate of 94.6% correct, which exceeds the 
performance of other algorithms. One of the advantages of using a probabilistic model is 
that it allows, through continuous training, to continuously adapt to long term system 
changes, such as changes in the electrode-skin interface. Other neuroprosthetics work relies 
solely on neural recordings to control the robotic arm. Recordings are usually made in brain 
areas that are responsible for motor planning or motor commands. The activity of recorded 
cells is decoded and related to a certain motion of the robot arm. Abeles and others (Abeles, 
Bergman et al. 1995; Seidemann, Meilijson et al. 1996; Gat, Tishby et al. 1997) analyzed 
neural population data from the frontal cortex of monkeys performing a delayed 
localization task. The monkeys were trained to perform a delayed instructed arm 
movement. This task made it possible to record from neurons during the planning phase in 
which the monkey knew what to do, but was not moving yet, and during the movement 
phase itself.  In such experiments it is possible to use an HMM to estimate the upcoming 
motor output from the recorded neural signal during the planning phase and control the 
prosthetic robot arm using decoded planning-related activity. Poisson firing statistics are 
usually assumed whereby the mean firing rate depends on the current state of the neuron 
population that is hidden from the observer. Movements or movement intentions can be 
decoded in such scenarios for example by thresholding the posterior probabilities of hidden 
states (Kemere, Santhanam et al. 2008).  
HMMs have also been used to model neural activity on a much smaller scale. Action 
potentials are formed by different ion channels that can either be closed or open, i.e. 
permeable for a special type of ion or not. The state of single ion channels can be recorded 
using cell-attached recording modes. The state (open or closed) of a single ion channel is 
probabilistic and depends on its own history and the history of membrane voltage amongst 
other factors. HMMs can model the dynamics of single ion channels and be used to estimate 
their state trajectory from noisy recordings (Chung, Moore et al. 1990; Becker, Honerkamp et 
al. 1994). 

2.2 HMMs as tools in data analysis 
In contrast to the abovementioned cases in which HMMs are used to directly model a 
hidden parameter of interest, HMMs are also commonly used as intermediate steps in data 
analysis, e.g. artifact correction. Dombeck et al. (Dombeck, Khabbaz et al. 2007) describe an 
experimental apparatus for two-photon fluorescence imaging in behaving mice; the mice are 
head-restrained while their limbs rest on a Styrofoam ball. The mice maneuver on the 
spherical treadmill while their head remains motionless. In such experiments it is common 
to observe running-associated motion artifacts in the focal plane of the microscope. The 
displacement of the brain relative to the microscope throughout the scanning process can be 
described by a (hidden) random walk on a finite two-dimensional grid. Key to artifact 
correction is the fit of the scanned image at a given time point and displacement compared 
to the reference image. The parameters of the displacement can be learned by maximizing 
over the joint probability of displacements and image similarities with the expectation 
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maximization algorithm. After correcting the motion artifacts in the image sequence, the 
cleaned data can be further analyzed to study the neural code or other questions of interest. 

2.3 Analysis of psychophysical data with HMMs 
HMMs have been used to infer when learning occurs in behaving subjects and shown to 
provide better estimation of learning curves than other methods. Smith et al. (Smith, Frank 
et al. 2004) studied learning in a binary choice task — subjects had to make a choice out of 
two possibilities (correct versus incorrect). In this case the observed data are a time series of 
Boolean values. The authors assumed that the subject's answers followed a Bernoulli 
distribution that depends on a hidden state, reflecting the subject's performance. Using this 
latent variable model they quantified the probability that subjects performed better than 
chance, as follows. The first estimated the hidden learning dynamics, which allowed them to 
estimate the subject's performance on a fine timescale, essentially on a trial by trial basis. 
Using a confidence bound on the inferred learning curve they estimated the exact trial when 
learning has occurred. This trial happened usually much earlier than when determined 
using less elaborate methods, revealing the superiority of the hidden-state approach. 

2.4 Analysis of natural behavior with HMMs 
Natural behaviors are increasingly the target of neuroscience research but they are much 
more difficult to characterize than controlled behaviors because of their many inherent 
degrees of freedom. In typical experiments, natural behaviors are captured by means of 
movies or sound recordings, or by placing sensors or emitters on critical body parts. It is 
often difficult to classify natural behaviors. For example, to classify the swimming behaviors 
of fish, or the mating behaviors of flies, human experimenters usually must painstakingly 
analyze the various image frames and inspect them for repetitive movement patterns. 
Obviously, it would be much more convenient to automate such processes and let machines 
do the pattern extraction. Today, efforts are underway to develop such techniques and 
HMMs are a key methodology with great potential.  
In the following, we introduce HMMs for analyses of complex vocal output, namely the songs 
of songbirds. The birdsong analysis problem bears resemblance with the speech recognition 
problem. However, the nature of birdsong learning creates different challenges for birdsong 
analysis. Therefore, different HMM approaches may be required as we will see next. 

3. Alignment of birdsong with HMMs 
Songbirds learn their songs from a tutor early during life, much like children learn their 
mother tongue from their parents. Songs in many species are composed of repetitions of a 
song motif that is composed of several syllables. The song motifs and syllables in closed-end 
learners such as the zebra finch are very stereotyped and do not change much during 
adulthood (Immelmann 1969). Song development, on the other hand, is more complex, and 
at any time juvenile birds can alter the spectral or temporal features of their songs: young 
birds can morph a syllable into another, drop an existing syllable, or introduce new syllables 
(Tchernichovski, Nottebohm et al. 2000; Tchernichovski, Mitra et al. 2001; Gardner, Naef et 
al. 2005). During development, song syllables may change independently of each other. 
Furthermore, songs can vary in speed from rendition to rendition (Gardner, Naef et al. 2005; 
Glaze and Troyer 2006). 
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A standard problem in birdsong analysis is that of segmenting the songs into motifs and 
into syllables. HMMs are useful for automated segmentation of birdsongs (Kogan and 
Margoliash 1998) because they can adequately deal with variable song tempo and spectral 
variability of song syllables.  
However, in many circumstances song analysis goes beyond segmentation. A typical 
situation for a birdsong researcher is that he or she wants to compare the song of a juvenile 
bird to that of his tutor, to find out how much the pupil has already learned.  To track song 
development through time, corresponding song elements have to be reliably identified 
across developmental phases. Below, we illustrate the use of HMMs for song comparison. 
The goal is twofold: first, it is to measure the similarity between two songs in terms of a 
single scalar quantity; and, second, to identify matching elements in the two songs. 
Assessment of song similarity has proven to be a very useful tool for developmental studies 
in which enabling or disabling influences on song learning are studied (Tchernichovski, 
Nottebohm et al. 2000; Tchernichovski, Mitra et al. 2001; Gardner, Naef et al. 2005; London 
and Clayton 2008) . The identification of matching song elements between different birds is 
of relevance in multi tutor studies in which we would like to trace back song elements to the 
tutor they have been learned from (Rodriguez-Noriega, Gonzalez-Diaz et al. 2010).  
To compare two different songs with each other bears resemblance with comparing the 
genomes of two different species, in which insertions or deletions of long strands of DNA 
sequences are frequently encountered. The problem of finding correspondences between 
sequences is often referred to as the alignment problem  (Brown, Cocke et al. 1990; Durbin 
1998). Clearly birdsong alignment is different from genome alignment, because in the 
former both spectral and temporal features change during development, whereas there is no 
analogy of spectral changes in genomes (the four letter alphabet of nucleotides has been 
preserved by evolution).   

3.1 Pair HMMs for birdsong alignment 
Computational approaches to the alignment problem, like minimal edit distance algorithms 
(Wagner and Fischer 1974), have been around for quite some time and recently pair hidden 
Markov models (pair HHMs) have become very common. They offer a unified probabilistic 
framework that entails these more basic techniques but is much more general (Durbin 1998). 
One advantage of pair HMMs in alignment over more standard dynamic programming 
techniques is that pair HMMs do not require ad-hoc parameter setting: the trade-off between 
insertions, deletions, and matches can be learned from the data and does not have to be set by 
hand. Before we introduce a new pair HMM architecture and apply it to birdsong alignment, 
we first illustrate the general problem of alignment using a toy example.  
Consider the following two sequences: ABAC and AADC. The second sequence results from 
the first by deleting B and inserting D at a different location. A possible way to describe the 
relationship between the two sequences is thus through the alignment (Match, Deletion, 
Match, Insertion, Match). This alignment is not unique, however. For example, it would also 
be possible to align the sequences using matches only (Match, Match, Match, Match), with the 
disadvantage that unequal symbols are matched onto each other (B onto A and A onto D), 
but the advantage that fewer alignment steps are required in the process. To decide which 
alignments are better, we define costs for the various matches, insertions, and deletions. 
Given these costs, the problem of finding the best sequence alignment can be solved by 
dynamic programming using minimum edit distance algorithms.  
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If we adopt a probabilistic view on the alignment problem (instead of the simpler cost 
perspective), we can represent the different types of mini-alignments (e.g. Match, Insertion, 
Deletion) by states of an HMM. Because such an HMM operates on pairs of sequences, we 
denote it with pair HMM (Durbin 1998). A simple pair HMM and an example alignment is 
depicted in Figure 1. 
 

 
Fig. 1. A simple pair HMM for alignment (after Durbin, 1998) and alignments produced by 
it. (a) A pair HMM with one match state (M), one insertion state (I) and one deletion state 
(D) as well as a begin and an end state. (b) Two sequences x and y (left) and their alignment 
(right) by virtue of the state sequence: M, D, M, I, M (Match, Deletion, Match, Insertion, 
Match). 

Using pair HMMs, the best sequence alignment is given by the most probable state path, 
which can be computed using an analogue to the Viterbi algorithm (Durbin 1998). We can 
also efficiently compute the probability that two sequences are related by any alignment 
using the forward algorithm. Independence of the scalar similarity of two sequences from 
any particular alignment is an advantage over the simpler dynamic programming approach 
outlined above, which allows only sequence comparisons by virtue of specific alignments. 
For example, the second and third best alignments might all be very good, which would so 
contribute to the similarity estimate of the pair HMM, whereas in the simple dynamic 
programming approach it does not. Hence, pair HMMs can provide a more robust similarity 
estimate than estimates based on the best alignment only. 
Another advantage is that using pair HMMs we are not dependent on pre-specified costs for 
insertions, deletions and matches, but these parameters are embedded in emission and 
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transition probabilities than can be learned from data using a variant of the Baum-Welch 
algorithm (Rabiner 1989). Note that the Viterbi, forward, backward, and Baum-Welch 
algorithms for pair HMMs are derived in a straight forward manner from their standard 
HMM counterparts (Durbin 1998).  
In the following we introduce a new pair HMM architecture that deviates from Durbin's 
original proposal in some significant ways. The pair HMMs contain three different types of 
hidden states (match, insertion, and deletion) and a continuous emission alphabet (compare 
Figure 1a). Durbin’s model operated only on discrete observations, which is adequate for 
problems such as genome alignment. However, when dealing with continuous data such as 
birdsong, models with continuous emission probability distributions are more convenient, 
because they can reflect the acoustic features of song on a continuous scale. 
We denote the two sequences by 1 2,  ,  ,  Tx x x…  and 1 2,  ,  , Uy y y… . The pair HMM contains m 
deletion, m  insertion, and n  match states. In our notation these hidden states are 
distinguished by the index j : { }1, ,j Deletion m∈ = …  correspond to deletions states, 

{ }      1, ,2j Insertion m m∈ = + …  correspond to insertion states, { }2 1, ,2j Match m m n∈ = + … +  
correspond to match states. Furthermore, we denote 

ija : transition probability from hidden state i  onto hidden state j  

( )j tb x  : emission probability of symbol tx  given hidden state    j Deletion∈  

( )j ub y  : emission probability of symbol uy  given hidden state    j Insertion∈   

( ),j t ub x y  : emission probability of symbols tx  and uy  given hidden state    j Match∈  

For our pair HMM, the recursive equations of the Viterbi algorithm are given by:  

 ( ) ( ) ( )( ):                  , , max 1, 1j j t u ij ii
j Match V t u b x y a V t u∀ ∈ = ⋅ − −  (1) 

 ( ) ( ) ( )( ):             , max 1,  j j t ij ii
j Deletion V t u b x a V t u∀ ∈ = ⋅ −  (2) 

 ( ) ( ) ( )( ):           , max , 1j j u ij ii
j Insertion V t u b y a V t u∀ ∈ = ⋅ −  (3) 

Where V  is the best score (highest probability) along a single path, at times t  in the first 
sequence and u  in the second sequence, which accounts for the first t  and u  observations 
and ends in state j . In the following, we consider two realizations this pair HMM 
architecture. 

3.1.1 Pair HMM with three states and distance metric 
First we consider a very simple realization of the aforementioned architecture:  a three-state 
pair HMM with one match, one deletion, and one insertion state. Its parameters are 
predetermined and not learned. Its transition matrix a is parameterized by three free 
parameters: 

 
1 2
1 0
1

a
o

δ τ δ δ
ε τ ε
ε τ ε

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (4) 
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The parameter ε  is the probability of remaining in the insertion or deletion state, whereas 
δ  is to probability of entering a deletion or insertion state from the match state and τ  is the 
probability to transit to the end state. Transitions from deletions to insertions and vice versa 
are not allowed in this model (compare Figure 1a). 
For the emission probability densities, we assume ( ) 1j tb x =  for    j Deletion∈  and ( ) 1j ub y =  
for    j Insertion∈ . The emission probability density ( , )j t ub x y  of the match state depends on 
the Euclidean distance between observations tx  and uy  as follows: 

 

2

2

–     

2( , )   
t ux y

j t ub x y k e σ
−

=  (5) 

where k  is the trade-off factor between matches and insertions/deletions and σ  is the 
standard deviation of the Gaussian distance metric. A good choice of k  is such that the 
expectation of the right hand side of equation 5 over all observation pairs tx  and uy  equals 
1. This reflects the assumption that random pairs tx  and uy  are about as likely to match as 
to form inserts or deletions. With the exception of our choice of emission probabilities 

( , )j t ub x y   in the match state, this model architecture corresponds to the one presented in 
(Durbin 1998).  
To obtain discrete-time observations tx  and uy  from birdsong, we binned the continuous-
time acoustic signal. A standard practice, that we also adopted here, is to use a time-
frequency representation of the signal (columns of log-power spectrograms, in our case with 
time-steps 5.8 ms between columns and frequency resolution 86 Hz, from 0 to 11025 Hz ). 
The observations tx  and uy  are given by normalized columns of the spectrogram. Figure 2b 
depicts an alignment of two birdsongs (a tutor song and a pupil song) that was computed 
using the 3 state HMM.  

3.1.2 Pair HMM with many states and no distance metric 
Next we introduce a more powerful pair HMM with many more states and more general 
alignment capabilities. Songs consist of sequences of distinct syllables in which the tempo of 
some syllable may vary more than others. Also, when songs of two different birds have to 
be aligned to each other (such as tutor song and pupil song), the spectral features of their 
songs might be quite different so it may be difficult to find an adequate distance measure. 
The expansion of the simple pair HMM from the previous section solves both these 
problems, i.e. temporal variability can be modeled locally and songs can be aligned even if 
the spectral mismatch is high. 
HMMs can serve as generative models of song (Kogan and Margoliash 1998). However, the 
pair HMM in our previous section is not a generative model of song. To adopt  this capability 
and model single song elements by discrete states, we choose an expansion of the pair HMM 
as follows: we define a set of individual states for each operation (deletion, insertion, match) 
instead of single state each. Further, we are dealing with a full transition matrix a. Note: In the 
case of working solely with insertion and deletion states, such a model would be equivalent to 
an HMM for each song separately. We choose as model for emissions a sum of Gaussians. 
Such models can be trained using the Baum-Welch-algorithm.  
Formally, the emission probabilities in the model are joint probability distributions over 
pairs of columns (for the match state) and distributions over single columns (insertion and 
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Fig. 2. Alignment of tutor song and pupil song. (a) Derivative spectrogram of tutor song and 
the pupil song. Visibly, the pupil copied the song of his tutor remarkably well. The main 
difference is Syllable A: In the tutor's song Syllable A consists of 4 parts, whereas the pupil 
divided that syllable into two syllables: Syllable A1 (consisting of 3 parts) and Syllable A2 
(consisting of 1 part). (b) Alignment of the two songs by the Viterbi path using the 3 state 
model. Syllable A in the tutor song is split into 2 and correctly aligned to Syllables A1 and A2 
of the pupil's song (arrows). All other syllables are correctly aligned as well. (c) Alignment 
of the same two songs by the Viterbi-path of a 40-state pair HMM. The model consists of 

20n =  match states, 10m =  deletion states, and 10m =  insertion states. Emission 
probabilities of deletion and insertion states are modeled as the sum of two 128-dimensional 
Gaussians defined on the spectrum of the corresponding song. The emission probability of 
the match state is defined as the sum of two 256-dimensional Gaussians (defined on the 
spectrum of both songs). The alignment in this 40-state model is similar to the alignment in 
the 3-state model. However, Syllable A of the tutor song is split in 3 or 4 parts (instead of 
two parts), marked by the arrows. The first split accounts for the break between Syllables A1 
and A2 in the pupil’s song, whereas the other splits account for Syllable A2 that is sung 
slower than the fourth part of the tutor Syllable A. 
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deletion), all of which can be learned from the data. In the example presented in Figure 2c, 
we have modeled the emissions probability densities for each state as a sum of two 
Gaussians with diagonal covariance matrix  

 ( ) ( ) ( )
2 1

12

1

12 Σ exp Σ
2

T
j t jk jk t jk jk t jk

k
b x c x xπ μ μ

− −

=

⎛ ⎞= ⋅ − − −⎜ ⎟
⎝ ⎠

∑  (6) 

for deletion states and similarly for the other states. The transition probabilities ija  as well 
as the means jkμ , the weights jkc , and the covariance matrix Σ jk  of each Gaussian were 
trained using the Baum-Welch algorithm on seven pairings of tutor and pupil song. The 
forward probabilities in our pair HMM (the probabilities ( ),  j t uα of observing partial output 
sequences until times t  and u and of being in hidden state j at these times  obey the 
recursive equations 

 ( ) ( ) ( ):                  , , 1, 1j j t u ij ij Match t u b x y a t uα α∀ ∈ = − −∑  (7) 

 ( ) ( ) ( ):              , 1,  j j t ij ij Deletion t u b x a t uα α∀ ∈ = −∑  (8) 

 ( ) ( ) ( ):            , , 1 .j j u ij ij Insertion t u b y a t uα α∀ ∈ = −∑  (9) 

The backward probabilities ( ),  i t uβ are calculated analogously: 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1

1

, , 1, 1 1,

                                                                           + , 1 .

i ij j t u j ij j t j
j Match j Deletion

ij j u j
j Insertions

t u a b x y t u a b x t u

a b y t u

β β β

β

+ + +
∈ ∈

+
∈

= + + + + +

+

∑ ∑

∑
 (10) 

The only parameters we have to define beforehand are the number  m  of deletion and 
insertion states, the number n  of match states, and the number of Gaussians in the emission 
model. But there is no need to define a (spectral) distance measure; hence the spectrograms 
in the songs to be aligned are never directly compared to each other. The emission 
probabilities ( ),j t ub x y  of match states represent spectral features which are acquired 
during training by matching similar spectral-temporal dynamics in both songs. 

3.2 Advantages and limitations of pair HMMs for birdsong alignment 
As outlined above, the main use for pair HMMs is the identification of corresponding 
syllables in songs from either a single bird or from two different birds. However, 
corresponding elements can in principle also be identified by different approaches. One 
could for example segment the audio signal into syllables by thresholding sound amplitude, 
then extract suitable features and cluster all syllables based on these features. Note that in 
this case, we fix a priori what constitutes similarity by virtue of our choice of the features 
and clustering algorithm. This is not at all a problem if we are dealing with simple similarity 
relationships, for instance, if the songs to be aligned are highly similar and their difference 
can be ascribed to a source of additive noise for example. It is also not a problem if we have 
sufficient knowledge of the invariances of the problem, i.e. the dimensions that do not play a 
role in establishing similarity, because, in that case, we can select our features accordingly. 
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If, however, the similarity relationship is more complex and we have no a priori knowledge 
of it, we may prefer to learn the similarity relationship from the data using as few 
assumptions as possible. That is what pair HMMs can give us. If two songs can be aligned 
using matches, insertions, and deletions as provided by pair HMMs, we can learn the 
similarity relationship between them using for example the Baum Welch algorithm. In this 
manner our pair HMMs can deal with the case of a pupil that correctly learns the tutor song 
except that the pupil's song has higher pitch (or song pitch varies randomly from trial to 
trial). Given sufficient data, the pair HMMs would be able to detect that pitch is an invariant 
feature with respect to the similarity relation, it would detect that pitch essentially does not 
matter. Furthermore, from our pair HMM we can conveniently read out the similarity 
relationship from the parameters of learned emissions in match states and, in principle, also 
from the transitions probabilities.  
Such learning does of course require computational resources. The multi-state pair HMM, 
outlined in 3.1.2 requires more computational resources than the simple three-state model 
from section 3.1.1 and many pairs of songs are needed in order to learn faithful model 
parameters. The computation time and memory requirements scale quadratic with the 
lengths of observation sequences to be aligned (compared to a linear increase in the case of 
normal HMMs). If we use a 100-state pair HMM and align sequences of 410  observation 
each, than we have to calculate and store 10 4 410    10 10 100= ⋅ ⋅  forward and backward 
probabilities  α  and β  in the course of processing one sequence pair with the Baum Welch 
algorithm. This underlines the importance of faster approximations of the Baum Welch 
algorithm (e.g. Viterbi training) in the context of sequence alignment.  
A more conceptual problem that we face when trying to align birdsongs, are swaps of single 
syllables. When learning the tutor song the pupil might change the order of syllables, e.g. 
the tutor sings ABCD and the pupil A’C’B’D’. Clearly, we would somehow like to have a 
model that can align the sequence by swapping B and C instead of using insertions and 
deletions. However, the Viterbi algorithm provides only one global path which in the best 
case either includes B and B’ or C and C’. We can overcome this problem by using the idea 
of the Smith-Waterman algorithm (Smith and Waterman 1981) to extend the Viterbi 
algorithm, in order to search for local instead of global alignments. In this extension the best 
score of match states in Equation (1) is thresholded by a power of the free parameter θ : 

 ( ) ( )
( )( )max 1, 1

  :                  , , max .
ij ii

j j t u
t u

a V t u
j Match V t u b x y

θ +

⎧ − −⎪∀ ∈ = ⋅ ⎨
⎪⎩

 (11) 

The formula for the deletion and insertion states are similarly changed to include θ .  The 
results are regions in which the probability ( ),jV t u  surpasses the threshold t uθ + . In these 
regions we backtrack the scores in order to find the local alignments. There is the risk that 
the Baum-Welch algorithm will entrain the alignment of B with C’ and C with B’. Such 
misalignment could probably be avoided by also adapting the Baum-Welch algorithm to 
consider possible local alignments instead of all possible global alignments. 

4. Alignment of spike trains with HMMs 
A common problem in neuroscience is to quantify how similar the spiking activities of two 
neurons are. One approach is to align the spike trains and take some alignment score as 
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similarity measure. To that end, Victor and Purpura (Victor and Purpura 1998) introduced a 
spike-train similarity measure based on the physiological hypotheses that the presence of a 
spike is probabilistic and that there is some jitter in spike timing. Victor and Purpura 
introduce two similarity measures: [ ]spikeD q  based on spike times and [ ]intervalD q  based on 
inter-spike intervals, where q  is a free parameter. They also propose an efficient algorithm 
to calculate these similarity measures. In this section, we outline how Victor and Purpura's 
method can be implemented using pair HMMs. We discuss the advantages of a pair HMM 
implementation and possible generalizations. First, we briefly introduce their measures:  

a) [ ]intervalD q   

Imagine two spike trains 1S  and 2S  both represented by vectors of inter-spike intervals.  
Their method transforms one spike train into the other by (i) adding spike intervals, (ii) 
removing spike intervals and (iii) changing the duration of a spike interval by tΔ . There is a 
unit cost for (i) and (ii), and a cost of *q tΔ  for (iii). The 'distance' or dissimilarity between 
two spike trains is defined as the minimal cost to transform 1S  into 2S  using (i-iii). This 
measure can be calculated efficiently using dynamic programming.  

b) [ ]spikeD q   

This is very similar to (a). Instead of considering spike intervals, we deal with exact spike 
times, where the parameter q now determines the cost of shifting a spike in time. Again, 
spikes can also be added or removed.  
(a) and (b) are computed using the same underlying efficient algorithm. Victor and Purpura 
use their measures to analyze spike trains elicited by a set of different stimuli. By using 
stimulus-dependent clustering based on their measures, they determine how well the 
different classes of spike trains can be separated. They find that the degree to which these 
classes are separable depends on the chosen value of the parameter q . They explore a range 
of different values for q , but find that there is no single optimal value for all cases: the 
choice of q  needs to be made based on trial and error. 
The two measures (a) and (b) can also be realized using a pair HMM. In such a pair HMM 
there are two states corresponding to unmatched inter-spike intervals in the two sequences, 
which are dealt with by adding or removing spike inter-spike intervals, respectively. Also, 
there is one match state in which the two inter-spike intervals are matched with associated 
emission probability ( ) ( )expMb t q tΔ = − Δ , where q  is a free parameter and tΔ  the interval 
difference. The total costs of adding, removing, and matching intervals are encoded in the 
emission and transition probabilities of the pair HMM. This pair HMM can be trained on a 
group of spike trains that belong to a given stimulus class. Thereby, the parameter q  is 
learned from the data. Such a simple procedure of identifying the optimal q  is 
advantageous compared to exploring a range of possible values or even choosing a value for 
q  a priori.  
In addition to its flexibility, another advantage of the pair HMM approach is that we can 
now define a novel similarity measure for spike trains, based not on a particular alignment, 
but based on all possible alignments. Instead of defining the similarity of two spike trains as 
the probability of the most likely transformation, we define it as the overall probability of 
observing the spike trains given the model parameters. This measure corresponds to the 
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forward probability of the pair HMM and takes into consideration all possible 
transformations between the two spike trains, weighed by their probability. To make the 
similarity measure independent of the lengths of the spike trains, it can be defined as the 
average forward probability per step: 

 ( ) ( )
1

max ,( , ) , |  T US x y P x y λ=  (12) 

where T and U are the respective lengths of the spike trains. A spike train measure based on 
a probabilistic approach has also been introduced by Douwels (Dauwels, Vialatte et al. 
2007). Their approach of stochastic event synchrony assumes that spike trains are equal 
apart from global shifts, the introduction or removal of spikes, and temporal jitter of single 
spikes. Such transformations can be described by a triplet of parameters describing the shift 
offset, the standard deviation of the timing jitter, and the percentage of spurious spikes. 
These parameters can be derived via cyclic maximization or expectation maximization.  

5. Spike sorting with HMMs 
To study the underlying neural code of complex behaviors, electrophysiology is the method 
of choice. For example, by implanting recording electrodes into a songbird's brain, mounted 
on motorized microdrives, it is possible to record from neurons while the bird engages in its 
normal singing behavior. The neurons spike trains are often recorded in the extracellular 
space using low impedance electrodes that typically pick up the activity of several neurons 
simultaneously (so called multi-unit activity). Correspondingly, telling the activity from the 
different cells apart (finding out which unit fired which spike) is an important problem, 
when dealing with multi unit recordings.  
The identification and classification of spikes from the raw data is called spike sorting. Most 
spike sorting methods consist of two steps. In a first step, spike events are extracted from the 
raw data. In a second step these events are classified. Difficulties arise when spikes overlap 
on the recorded trace (arising when neurons are densely packed and fire at high rate), 
compare Fig. 3. These 'overlaps' are notoriously difficult to sort. The shape of such an 
overlap can be complex, because the number of different spikes contributing to the shape is 
unknown, as is the exact time delay between them.  
 

 
Fig. 3. Example of a multi-unit recording: Spike waveforms of two different neurons (1 and 
2) are recorded on the same electrode. The rightmost waveform (1+2) represents a spike 
overlap. 
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HMMs provide a framework for addressing the spike sorting problem (Herbst, Gammeter et 
al. 2008). Spikes can be described by independent random variables (the hidden variables), 
whereas the recorded voltage is the probabilistic outcome conditional on the state of the 
hidden variables. 
The transient nature of spikes allows us to describe neural activity by a discrete-time 
Markov chain with a ring structure, Fig. 4a. The first state in the ring is the resting state of 
the neuron, and the remaining states represent a spike. The resting state decays with fixed 
probability p  per unit time (a free parameter), after which states along the ring are visited 
with unit probability (spikes are never incomplete). The recorded voltage level on the 
electrode is modeled as a Gaussian probability density with state-dependent mean (free 
model parameter) and state-independent variance (free model parameter), Fig. 4b. 
 

 
Fig. 4. (a) The state space of the hidden variable: There is a resting state that is left with 
probability p. Once the resting state is left, state 2 to K are visited with unit probability. (b) 
For each state k there is a free parameter kμ , the mean of the Gaussian output probability. 
The means of the Gaussians represent the mean spike waveform. 
A single ring is used to sort extracellular spikes from a single neuron, as follows: The model 
parameters (means, variance, spike probability) are learned by using algorithms such as the 
Baum-Welch algorithm. Thereafter, these parameters are used to calculate the most probable 
hidden state sequence with the Viterbi algorithm. The spike times are given by the time 
points at which the hidden variable visits state 2 (visited states start revolving around the 
ring). 
This HMM can be extended to allow for sorting of multi-unit activity. In this extension, each 
neuron is modeled as an independent ring-like Markov process as in Figure 4a. The 
extracellular voltage signal is again modeled as a Gaussian random variable with fixed 
variance (free model parameter). The mean of the Gaussian is formed by summing up the 
state-dependent means of each neuron. Hence, each neuron contributes to the mean of the 
Gaussian in a linear manner. The extended framework forms a factorial hidden Markov 
model (fHMM) (Ghahramani and Jordan 1997). 
The learning of model parameters can be performed using the expectation maximization 
algorithm (Baum-Welch) or using structured variational inference (Saul, Jaakkola et al. 
1996). After model parameters are learned, spike sorting is performed using the Viterbi 
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algorithm. Using an HMM approach, spike sorting  can be done in a single framework, we 
do not have to separate the sorting problem into separate frameworks for spike extraction 
and spike classification as is common using other sorting methods. The HMM operates on 
the recorded data from the first to the last step of the spike sorting. There is no need for pre-
processing, such as spike identification, feature extraction or even manual inspection, all of 
which are error prone.  
HMM-based spike sorting is permissive to spike overlaps.  Most overlap-permissive 
algorithms first classify isolated spikes and then split overlapping cases to the according 
classes. The advantage of the HMM algorithm is that it is overlap robust both during 
parameter learning and during spike-sorting itself; for the model there is no difference 
whether spikes appear as single or overlapping events. The parameters for a neuron can 
even be learned in the case where the spikes are always overlapping and never appear as 
single events. 
The HMM can easily be extended to sort spikes recorded with tetrodes. Tetrodes are 
electrode bundles with contacts lying within a few micrometers of each other. Depending on 
the distance between spiking neurons and the electrodes, the signal is picked up by several 
electrodes at the same time, with varying amplitude on each electrode. The signal on these 
electrodes is thus strongly correlated and this additional information can be incorporated 
into the HMM. The observed voltage level is now modeled by a multivariate Gaussian 
probability density with a state-dependent mean vector (free model parameters) and fixed 
covariance matrix (free model parameters).  
Apart from spike overlaps, there are other difficulties that are often encountered in 
electrophysiological recordings: signal outliers (or artifacts) and nonstationarities of the 
data, due to bursts or electrode drift. Electrode drifts lead to a sustained change of recorded 
spike shape. Drifts happen slowly, they can be dealt with by updating model parameters 
(few iterations of the Baum-Welch algorithm) from time to time. That way the parameters 
are able follow the drift. Spikes produced in a very short time period, so called bursts, 
usually change their shape due to biophysical constraints. Spikes in bursts usually have 
similar spike shape as single spikes but smaller amplitudes, because not all ion channels are 
ready to open again. Bursting neurons can be modeled using several state rings per neuron, 
one ring for the first spike in a burst and the other rings for successive spikes. The 
introduction of new parameters can be kept to a minimum by introducing one new 
parameter for every ring, namely the scaling factor by which the spike template (common to 
all rings) is multiplied. Signal outliers should be classified as such. The HMM allows us to 
identify outliers both during learning and sorting as follows: the probability of an 
observation sequence up to time t can be calculated and can be plotted against t. From this 
probability trajectory one can identify the times at which the model fits the data poorly and 
exclude that data from learning and sorting. 
The main downside of the HMM approach for spike sorting is the computational cost 
involved. Assume a model with K  states per ring, B  rings per neuron (to model bursts) and 
N  neurons. The number of hidden states, (KB)N, grows exponentially with the number of 
neurons. The problem can be made tractable by imposing restrictions on the activity 
patterns modelled. For instance, by restricting the number of neurons that can be co-active 

at the same time to M, the number of hidden states can be reduced to ( )MN
KB

M
⎛ ⎞
⎜ ⎟
⎝ ⎠

.  
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1. Introduction 
The identification and classification of seismic signals is one of primary work that a volcano 
observatory must do, and this work should be done in a period of time as close as possible 
to the real time”. Each seismic event is related to a different source process, and its time and 
spatial distribution could be used as elements of an early warning system of volcanic 
eruption (see for example Chouet el el 1996 [1, 2], or Chouet 2003 [3]).  
Moreover, the recognition system is based on the HMM theory, published in the late 60s by 
Baum et al. (1966) [4] and Baum et al. (1970) [5]. Nowadays, the Hidden Markov Models 
technique is the more effective one to implement voice recognition systems. Over the past 
years, Hidden Markov Models have been widely applied in several models like pattern [6, 
7], pathologies [8] or speech recognition [9, 10], and DNA sequence analysis [11, 12].  On the 
other hand, previous works [13, 14, 15, 16, 16a, 16b] have probed the parallelism among 
speech and volcano-seismic events in terms of signal complexity and real time requirements.  
At the present many observatories perform this work observing on the screen or in paper 
the seismograms, and a technician decides the type of event under their appearance in the 
time domain and their experience. This work is in many cases difficulty if the rate of 
occurrence of seismic events per hour is high, or if weather or local conditions increase the 
level of seismic noise. A more detailed analysis, including for example spectral 
characteristics, would be too time-consuming to be carried out in real time. Furthermore, in 
a crisis situation, there is a need to make fast decisions that can affect the public safety. This 
is the reason because many researchers are focussing their efforts in the development of a 
robust automatic discrimination algorithm of seismic events, enabling technicians to focus 
their efforts in the interpretation of the situation or to analyze only a reduced number of 
signals. Recently Del Pezzo et al.[17] and Scarpeta et al.[18]  have presented the application 
of neuronal networks for discrimination and classification of volcanic and artificial signals at 
Vesuvius Volcano and Phlegraean Fields (Italy). These methods have been successfully 
applied to discriminate signals for local and volcanic seismicity. However, a limitation of 
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these systems is that they require a manual pre-processing of the data to select a subset of 
recordings, each one containing just one seismic event to be classified. On the other hand, 
Ornhberger [19] has studied discrete hidden Markov modelling (HMM) tools for continuous 
seismic event classification. Just as neural networks, these methods have been successfully 
applied to discriminate signals for local and volcanic seismicity without the limitations of 
the first. Gutiérrez et al. [16], Ibañez et al [16a], Cortes et al.[16b] and Benítez et al. [13] 
improved the continuous HMMbased seismic event classification and monitoring system 
and applied the algorithm to the detection and classification of four kind of volcanic events 
recorded at Etna, Stromboli (Italy), Popocatepetl, Colima (México) and Deception Island 
(Antarctica). This system is based on the state of the art of HMM-based pattern recognition 
techniques, successfully applied to other disciplines such as robust automatic speech 
recognition (ASR) systems.  
In this sense, we recordings of different seismic event types are studied at two active 
volcanoes; San Cristóbal and Telica in Nicaragua. The objective of the present work is to 
observe the validity of the method using data from active volcanoes, and to check if it is 
possible to exchange different databases to recognize signals belonging to different 
volcanoes. We use data from one single field survey carried out in February to March 2006.   
In this work we initially proceeded to identify the signals and to segment them to obtain a 
model for each class of events. Then we applied separately the model for each volcano data 
set and finally we mixed both data set to have a joint test of capability and accuracy of the 
system. 

2. Regional setting 
2.1 Nicaragua volcanic chain 
In Nicaragua exists more than 200 volcanic structures. Some experts refer at more than 600. 
Counting their multiple small crater lakes (gaps) of volcanic origin, domes, maar, etc. The 
Nicaragua volcanic chain has produced all the mechanisms and volcanic products known in 
the world. The volcanic activity combined with tectonic processes taking place above the 
subduction zone along the Pacific Coast of Central America, formed the Volcanic Chain of 
Nicaragua. This chain is a part of the Central American Volcanic Front, which includes 18 
volcanic centres in Nicaragua, of which eight are active. The chain is underlain by Middle 
Miocene – Late Pliocene volcanics and volcanogenic sediments (the widest spread Coyol 
and/or Tamarindo Formations). 
Young volcanoes are clustered in several morphologically well defined complexes, in some 
cases, separated one from another by NE trending, siniestral strike-slip faults (van Wyk de 
Vries, 1993 [20]), Carr and Stoiber, 1977 [21]). In Nicaragua exist ten main individual 
volcanic complexes, as listed below 
a. Cosigüina shield volcano 
b. San Cristóbal - Casita complex  
c. Telica complex 
d. El Hoyo - Cerro Negro complex  
e. Momotombo - Malpaisillo - La Paz Centro complex  
f. Apoyeque silicic shield volcano 
g. Miraflores - Nejapa volcano - tectonic zone 
h. Masaya volcanic complex 
i. Apoyo / Mombacho / Zapatera volcanic complex 
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j. Nandaime - Granada volcano - tectonic Aligneament 
k. Ometepe island volcanoes 
The respective volcanic complexes are situated in the Nicaraguan Depression, which is 
interpreted as an asymmetric graben. The two volcanoes of this work, San Cristóbal and 
Telica are the major active volcanoes in the complexes of the same name (Fig 2.1). 
 

 
Fig. 2.1 San Cristóbal and Telica volcano complex in Nicaragua volcanic chain 

The San Cristóbal volcanic complex, 100 kilometers northwest of Managua, consists of five 
principal volcanic edifices. The symmetrical youngest cone, San Cristóbal (also known as El 
Viejo) is the highest peak of the Maribios Range, and is capped by a 500 x 600 meter wide 
crater. The San Cristóbal is a Quaternary stratovolcano. Historical eruptions from San 
Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 
16th century.  
Telica is a Quaternary stratovolcano located in the western part of Nicaragua. It has six 
cones, the tallest of which is 1061 meters high. The Telica volcano, (1,061 meters) one of 
Nicaragua's most active volcanoes. Telica has erupted frequently since the Spanish Era. The 
Telica volcano group consists of several interlocking cones and vents with a general 
northwest alignment. Sixteenth-century eruptions have been reported at symmetrical Santa 
Clara volcano, at the southwest end of the Telica group. 

3. Data instruments and sities 
More than 600 hours of data in each volcano were analyzed and 431 seismic events in San 
Cristóbal and 1224 in Telica were registered at short period stations. The first step in the 
data analysis, after the revision of the files, is the visual inspection and segmentation of the 
signals. Each file is 300-s-long and could have different types of volcanic signals. Fig 3.1 and 
3.2 shows the Histogram of the duration (in seconds) for each one of the seismic events. The 
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Fig. 3.1 Histogram of the duration (in seconds) for each one of the seismic events in San 
Cristóbal volcano. 

durations of the event range between 10 and 40 seconds and tremor background noise 20-
120 seconds.  
For our study we proceeded to distinguish three types of signals events in the San Cristóbal 
volcano; San Cristóbal Long Period signal, Strombolian and San Cristóbal explosions, 
volcanic tremor and background seismic noise. We have defined these types as S1, S2 and 
S3. Additionally, we have defined the tremor background seismic noise as NS. Fig 3.3 shows 
and example of San Cristóbal explosion signal (S2) and Fig 3.4 shows and example of 
background seismic noise (NS) in which is presented a harmonic tremor. 
For Telica volcano we define four types of seismic signals; Strombolian explosions, Telica 
explosions, Telica Long Period signal, volcanic tremor and background seismic noise. We 
have defined these types as T1, T2, T3 and T4.  Additionally, we have defined the tremor 
background seismic noise as NT. Fig 3.5 shows and example of Telica signal (T1) and Fig 3.6 
shows and example of Telica signal (T4). 
The characteristics of the San Cristóbal explosion quakes have peaks from 3 to 8 Hz in the S1 
event, 5 Hz in the S2 event to 6 Hz in the S3 event. The first 3 seconds of the signal are 
dominated by frequencies between 0.5 and 2 Hz, while the successive phases show a 
broader frequency content (see “zoom frequency spectrogram (d)” in fig. 3.3).  Fig 3.4 shows 
and example of harmonic tremor in San Cristóbal, the signal are dominated by frequencies 
between 2.5 and 3.5 Hz.  In the figure three bands of energy can be observed, the highest 
peak is about 2.8 Hz. For Telica volcano the durations of the event range between 10 and 60 
seconds, and for the background noise between 20 and 140 s.  The rest of the volcanic signals 
were not considered. In fact, In order to have an adequate model of every class of volcanic 
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Fig. 3.2 Histogram of the duration (in seconds) for each one of the seismic events in Telica 
volcano 

signals we need a number of events as large as possible, and only the above cited three 
classes in San Cristóbal and four classes in Telica could provide a number of events large 
enough to build a well-defined model. 
The segmentation process consists in setting marks on the seismograms to define the data 
segments that contain a particular seismic event. Then, a label is added to declare the type of 
event that occurred at each segment. This procedure was done manually by a single expert, 
who set the beginnings and endings of the seismic events by waveform inspection and 
decided which class they belong to. In this way we ensure the use of the same criteria in the 
selection process.   
For San Cristóbal volcano we segmented 224 samples of S1, 330 samples of S2, 544 samples 
of S3 and 1,746 samples of background noise (NS) events. For Telica volcano we segmented 
360 samples of T1, 502 samples of T2, 429 samples of T3, 298 samples of T4 and 2,855 
samples of background noise (NT) events. 

4. Method 
4.1 Introduction 
We initially proceeded to identify the signals visually, and to segment the data to obtain a 
model for each event class. Once the recordings were manually segmented and labelled, the 
recognition system was carefully trained using the available Baum-Welch reestimation 
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Fig. 3.3 S2 seismic signal analysis at San Cristóbal volcano. 
algorithms [22] using the Hidden Markov Model Toolkit (HTK) software [23].  Fig 4.1 shows 
a four-state left-to-right HMM non-emitting entry and exit states. The models were defined 
as left-to-right HMMs where only transitions from state i to state i+1 are allowed. The 
optimal length of the HMMs is mainly determined by the mean duration of the explosions 
and tremor events being modelled. Several experiments were carried out in order to 
determine the best choice.  On the other, the HMM emission probabilities at each state were 
previously defined as Gaussian mixture densities and, during the training process, HMM 
models with increasing number of Gaussians were built in order to determine the best 
trade-off between recognition accuracy and performance. For our work we defined the 
models with 13-state HMMs with 16 Gaussians. Fig 4.2 shows the architecture of a general 
purpose HMM-based pattern recognition system. The training database and transcriptions 
are used to build the models. We applied these models separately for the volcano data set 
and finally mixed both data sets as a test of the portability of the system. The method 
analyzes the seismograms comparing the characteristics of the data to a number of event 
classes defined beforehand. If a signal is present, the method detects its occurrence and 
produces a classification.  The recognition and classification system based on HMM is a 
powerful, effective, and successful tool [24]. From the application performed over our data 
set, we have demonstrated that in order to have a reliable result, a careful and adequate 
segmentation process is crucial. Also, each type of signals requires its own characterization. 
That is, each signal type must be represented by its own specific model, which would 
include the effects of source, path and sites. 
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Fig. 3.4 Harmonic tremor  in a NS background seismic noise  in San Cristóbal volcano. 

4.2 Description of the recognition system 
An HMM-based seismic event recognition system [13,16,16a,16b]  assumes that the signal is 
a realization of a sequence of one or more symbols. In order to perform the recognition 
process the recognizer decomposes the incoming signal as a sequence of feature vectors. 
This sequence is assumed to be a precise representation of the seismic signal while the 
length of the analysis window is such that the seismic waveform can be considered as 
stationary. The goal of a seismic event recognition system is to perform a mapping between 
a sequence of feature vectors and the corresponding sequence of seismic events.  

4.3 Seismic event recognition 
Let a sequence of seismic events w= {w1, w2, ..., wl} be represented as a sequence of feature 
vectors ot or observations O, defined as 

 1 2, ,..., ,...,t T=O o o o o  (1) 

where ot is the feature vector observed at time t. The solution to the problem of continuous 
event recognition is to select the sequence of events w with the maximum probability 
P(w|O), that is: 

 arg max     ( | )P
w

w O  (2) 



 Hidden Markov Models, Theory and Applications 

 

194 

 
Fig. 3.5 T1 seismic signal analysis at Telica volcano 

4.4 HMM-based seismic event classification 
HMM-based pattern recognition systems normally assume that the sequence of observed 
feature vectors corresponding to each event is generated by a Markov model. A Markov 
model is essentially a finite state machine with several states. Figure 4.1 shows a four-state 
left-to-right HMM with non-emitting entry and exit states. A change of state takes place 
every time unit and a feature vector ot is generated from a probability density bj(ot) 
determined during the training process. Moreover, transition from state i to state j is 
governed by the transition probabilities aij which are used to model the delay in each of the 
states and the transitions through the entire model. 
Figure 4.2 shows the architecture of a general purpose HMM-based pattern recognition 
system. The training database and transcriptions are used to build the models. Once the 
models are initiated, the recognition system performs feature extraction and decoding based 
on the Viterbi algorithm (Fig. 4.3). The output is the sequence of recognized events, 
confidence measures and global accuracy scores. 

4.5 Signal processing and feature extraction 
The first step of the recognition process is the signal processing feature extraction which 
converts the volcano seismic waveform in a parametric representation, with less redundant 
information, for further analysis and processing. As the short-time spectral envelop 
representation of the signal has been widely used, with good results, in speech recognition 
systems (Rabiner and Juang,1993) [25], a similar representation for our volcano seismic 
recognition system is used in this work. The feature extraction process is described as 
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Fig. 3.6 T4 seismic signal analysis at Telica volcano 
follows. The signal is arranged into 4 seconds overlapping frames with a 0.5 seconds frame 
shit using a Hamming window. A 512-point FFT is used to compute the magnitude 
spectrum which serves as the input of an emulated filter-bank consisting of 16 triangular 
weighting functions uniformly spaced between 0 Hz and 20 Hz. The overlap between 
adjacent filters is 50%. The purpose of the filter bank analyzer is to give a measurement of 
the energy of the signal in a given frequency band. Then, the natural logarithm of the output 
filter-bank energies is calculated resulting a 16-parameter feature vector. Since the log-filter 
bank energies are highly correlated and the recognition system uses continuous observation 
HMMs with diagonal covariance matrices, it is necessary to apply a decorrelation 
transformation. Thus, the Discrete Cosine Transform (DCT) is used to decorrelate the 
features and reduce the number of components of the feature vector from 16 to 13 
coefficients. Finally, the feature vector is augmented with linear regressions of the features 
(derivatives and accelerations) obtaining a total of 39 parameters. 

4.6 Training 
The recognition system [13,16,16a,16b] is based on continuous hidden Markov models 
(CHMM). CHMM are trained for each seismic event to be recognized and a noise model is 
used to represent sequences with no events. Both, training and recognition processes are 
performed using HMM Tool Kit (HTK) software (Young et al., 1997 [26]). In a CHMM the 
emission probabilities for a feature vector ot in state x(t), bx(t)(ot) are given by: 

 ( )
11

( ) ( , , )
S K

x t t ik k k t
ks

b c N μ σ
==

= ∑∏o o  (3) 
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Fig. 4.1 Four state left-right HMM with non-emitting entry and exit states. 

where S is the number of parameters in the feature vector, and K is the number of 
probability density functions (PDFs) considered. 
The training algorithm for the HMM consists on finding the parameters of the model (i.e.: 
the weights for each state of the HMM, cik, and the transition probabilities between states aij 
of the model) from a previously labelled training database. Usually, the maximum 
likelihood criterion is chosen as the estimation function to adjust the model parameters that 
is, the maximization of the P(O|M) over M, where M defines an HMM. However, there is 
no known way to obtain a solution in a closed form. The Baum-Welch algorithm (Bahl et al., 
1983 [27] and Dempster and Rubin, 1977 [28]) is an iterative procedure which provides a 
locally optimum solution to solve this problem (Fig. 4.4). 

4.7 Recognition 
The operation of the recognition system is described in equation 3. Note that P(O|w) is the 
conditional probability of the feature vector sequence O given the sequence of events w 
which can be computed by the HMMs while P(w) is the probability of the sequence of 
events w. As there is no statistical knowledge of possible event sequences, we assume that 
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Fig. 4.2 Architecture of an HMM-based seismic event classification system. 

 

 
 
Fig. 4.3 Viterbi algorithm 
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Fig. 4.4 Baum-Welch algorithm 

after a particular event, any other one or noise could appear with the same probability. The 
recognition system combines the probabilities generated by the models and the probabilities 
obtained by the allowed transition for the seismic events. Equation 3 indicates that it is 
necessary to generate all the sequences of events and to evaluate all of them, thus selecting 
the one with maximum probability. Our recognition system solves this problem by means of 
the Viterbi decoding algorithm (Rabiner et al. 1993 [25], Furui and Soundhi 1992 [29], Young 
et al. 1997 [26]). 

5. Results 
5.1 Preparation of the database 
The first step in the data analysis, after the revision of the files, is the visual inspection and 
segmentation of the signals. As commented before, each file is 300-s-long and could have 
different types of volcanic signals. For our study we proceeded to distinguish four types of 
events for Telica volcano and three types of event for San Cristóbal volcano, according with 
the volcanic activity of each one. For Telica volcano we define four types of seismic signals; 
Strombolian explosions, Telica explosions, Telica Long Period signal, volcanic tremor and 
background seismic noise. We have defined these types as T1, T2, T3 and T4.  Additionally, 
we have defined the tremor background seismic noise as NT. In San Cristóbal volcano we 
identified three types of signals; Strombolian explosions, San Cristóbal explosions, volcanic 
tremor and background seismic noise. We have defined these types as S1, S2 and S3.  
Additionally, we have defined the tremor background seismic noise as NS. The rest of the 
volcanic signals were not considered. In fact, in order to have an adequate model of every 
class of volcanic signals we need as large as possible number of data, and only the above 
cited four class could provided a number of events to built a well defined model. The 
segmentation process consists in to mark over the seismogram the segment that corresponds 
to every class of events.(Fig. 5.1) This procedure was done by eye and by an unique expert 
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who has decided the start and end of every signal. In this way we are confident of the use of 
the same criteria in the selection process. For San Cristóbal volcano we segmented 224 
samples of S1, 330 samples of S2, 544 samples of S3 and 1,746 samples of background noise 
(NS) events. For Telica volcano we segmented 360 samples of T1, 502 samples of T2, 429 
samples of T3, 298 samples of T4 and 2,855 samples of background noise (NT) events. 
 

 
Fig. 5.1 Example of segmentation S2 and S3 signals in San Cristóbal volcano 

5.2 Recognition system setup 
Once the recordings were manually labelled during the data preparation stage, the 
recognition system was carefully trained using the available Baum-Welch reestimation 
algorithms [23] present in the Hidden Markov Model Toolkit (HTK) software [27]. The first 
step in the training process is the feature extraction process on a frame by frame basis as 
described above. The 39 parameter feature vector including static coefficients as well as 
dynamic features is used for training and testing. The training process consists of the 
initialization of an HMM for each of the events based on a training labelled data set. In this 
way, different HMMs were built for each of the events analyzed at the different volcanoes: 
that is, Telica and San Cristóbal event. Moreover, the different background noises observed 
at both volcanoes were also modelled using different HMMs. The models were defined as 
left-to-right HMMs where only transitions from state i to state i+1 are allowed. The optimal 
length of the HMMs is mainly determined by the mean duration of the types of events being 
modelled. Different experiments were carried out in order to determine the best choice. On 
the other, the HMM emission probabilities at each state were previously defined as 
Gaussian mixture densities and, during the training process, HMM models with increasing 
number of Gaussians were built in order to determine the best trade-off between recognition 
accuracy and performance.  
To check the confidence of the method, two types of exercises have been done: closed and 
blind test. Closed test are done when the same data are used for train and test. For blind test 
the volcano database is divides in three subset and, rotary two subset are used to train the 
models and the other one for test; the final result is the average of the three different 
experiments carried out. Closed test could help to obtain an initial configuration of the 
recognition system, an initial valuation of the difficulty of the task and, even an idea of the 
quality of the supervised segmentation of the database. The blind test show objective results 
of the automatic classification system. 
The direct application of the system, specifically trained for the San Cristóbal and Telica 
volcanoes, provided the following results: We obtained an 88.92% and 74.78% of accuracy in 
blind test (see table III and VI). Tables I, II, IV and V shows the confusion matrices for the 
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experiments conducted on the San Cristóbal and Telica volcanoes with 13-state HMMs 
defined with 16 Gaussians.  Tables I and IV shows a set of closed test experiments for the 
different events for San Cristóbal and Telica database and Tables II and V shows a set of 
blind test experiments for the different events for San Cristóbal and Telica database.  
These matrices indicate the different errors that appear in a automatic recognition system; 
substitution errors, insertion errors and deletion errors. A substitution error is when the 
system assign a wrong label to a well know event; a insertion error is when the system 
identify an event inside of a non labelled segment, for example, an explosion in the middle 
of the noise, and a deletion error is when the system ignore a labelled event. In all the cases, 
the confusion matrices are almost diagonal. Reading across the rows of the confusion 
matrix, each column represents the number of times that the event was automatically 
labelled by the system as such event.  For example Table I shows that 102 San Cristóbal 
Long Period signal (S1) events were recognized as S1 event and 6 times was not identified 
by the recognition system (“del” row); the “ins” row indicates the number of time that each 
one of the events was incorrectly detected when just noise is present in the signal. Tables III 
and VI shows the percentage correct (%Corr) and the accuracy (%Acc) in closed and blind 
test. 
 

 NS S1 S2 S3 

NS 617 0 0 13 

S1 0 102 0 0 

S2 0 0 130 0 

S3 0 0 1 193 

Ins 0 1 0 1 

Del 72 6 21 27 

Table I. San Cristóbal training result (closed test) 

 

 NS S1 S2 S3 

NS 422 0 0 0 

S1 1 10 0 2 

S2 2 1 46 3 

S3 2 2 5 157 

Ins 3 0 11 11 

Del 13 3 5 12 

Table II. San Cristóbal test result (blind test) 
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 %Corr %Acc 

Closed 
test 88.16 87.99 

Blind 
test 92.57 88.92 

Table III. San Cristóbal % result (closed and blind test) 
 

 NT T1 T2 T3 T4 

NT 2193 21 23 6 5 

T1 1 210 6 3 6 

T2 1 8 360 3 1 

T3 1 2 3 330 3 

T4 1 0 2 0 264 

Ins 65 39 64 32 6 

Del 164 28 59 38 30 

Table IV. Telica training result (closed test) 

 
 NT T1 T2 T3 T4 

NT 145 0 2 0 0 

T1 0 9 2 1 9 

T2 0 0 12 0 0 

T3 0 1 3 13 3 

T4 0 4 3 5 8 

Ins 0 1 5 2 1 

Del 8 3 2 3 4 

Table V. Telica test result (blind test) 

With these preliminary set of experiments we have set up the HMM-based recognition 
system and, in order to validate it, we have carried out experiments with a database 
containing recordings from both San Cristóbal and Telica volcanoes. With these tests we 
want to determine if the seismic signals as well as the background noises observed at San 
Cristóbal and Telica are clearly separable on a mixed data set. Table VII shows the confusion 
matrix for this test with 16-Gaussian HMMs. It is shown that it is almost diagonal and that 
San Cristóbal events, Telica events and the different background noises observed at San 
Cristóbal and Telica are effectively recognized with an accuracy of about 91.41%. In this 
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way, no confusion occurred between the events at San Cristóbal and Telica so that no San 
Cristóbal event was classified as an Telica event and viceversa. 

6. Discussion and conclusions 
In the present work we have developed a volcanic seismic event discrimination system by 
using an automatic classification system based on Hidden Markov Models (HMM). The 
present system uses the statistical information compiled from a training set of data, when 
the event classification was supervised by an expert. From these data sets we have 
established a model of every event type. The present work used data from two active 
 

 %Corr %Acc 

Closed 
test 89.00 83.54 

Blind 
test 78.24 74.78 

Table VI. Telica %  result (closed and blind test) 
 

========================= HTK Results Analysis ========================= 
-------------------------------------------------- Overall Results -------------------------------------------------- 
SENT:    %Correct   = 75.66   [H=917, S=295, N=1212] 

WORD:  %Corr       = 93.52, Acc=91.41 [H=4531, D=274, S=40, I=102, N=4845] 

 
SAN CRISTÓBAL TELICA  

NS S1 S2 S3 NT T1 T2 T3 T4 
NS 837 2 8 0 7 0 0 1 1 
S1 0 248 1 0 0 0 0 0 0 
S2 0 0 298 0 1 0 0 0 0 
S3 0 0 0 84 0 0 0 0 0 
NT 10 0 0 0 1964 4 3 0 0 
T1 0 0 0 0 0 232 0 1 0 
T2 0 0 0 0 0 0 351 0 0 
T3 0 0 0 0 0 0 0 308 0 
T4 0 0 0 0 0 0 0 0 209 
Ins 19 0 3 0 67 1 6 5 1 
Del 57 11 16 0 118 22 24 13 13 

Table VII. Confusion matrix for mixed San Cristóbal/Telica recognition experiments. 
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RECORDS 
MODELS TELICA SAN 

CRISTOBAL MIXED RECORDS 

TRAINING 83.29% 87.99% -- 
TEST 74.48% 88.92% -- 

TELICA DB TRAINING SUCCESS NO SUCCESS -- 
SAN CRISTÓBAL DB 

TRAINING 
NO 

SUCCESS 
 

SUCCESS -- 

TELICA AND SAN 
CRISTÓBAL MIXED DB 

TRAINING 

 
-- 

 
-- 

SUCCESS TRA 
91.41% 

But only with 
individual training 

Table VIII. Telica and San Cristóbal mixed data bases training.? 
DB = DATA BASE, TRA = TRAINING 

volcanoes of Nicaragua, San Cristóbal and Telica, with different eruptive processes. We use 
data from two field surveys carried out in February to March 2006. At every volcano we 
have identified different types of events, three types and noise for San Cristóbal (S1,S2 and 
S3), and four types for Telica (T1, T2, T3 and T4) and background noise. The direct 
application of the system, specifically trained for every volcano, provided the following 
results: 

6.1 San Cristóbal 
We obtained, see table III, a 88.92% of accuracy in blind test, with a 11.1% of error. In the 
error estimate we include two types of results, the insertion of new events (20% of the 
errors), not labelled previously by the expert, and the deletion of signals. In this situation, 
the insertion of new events in the data base only could be considered as an error if these 
new events are not true events. In our case, more than the 90% of the insertions produced by 
the system correspond to true event that were no previously labelled in the training process. 
In figures 3.3 and 3.4 we show the seismogram, spectrogram and power spectra of samples 
of explosions (S2) and background tremor (NS) for San Cristóbal volcano. It is clear the 
difference between both types of signals. 

6.2 Telica 
Observing table VI, the application of the system for the data set of Telica has an accuracy of 
74.78%, with an error of 25.22%. In this case, the insertions reach up to 69.2% of the total 
errors, and more than 90% of these insertions were a posteriori identified visually as a valid 
event. Thus the real accuracy of the system is higher than 80%. Comparing Figures 3.5 and 
3.6, we find that the spectral and time-domain characteristics of T1 and T4 event are similar. 
In spite of these similarities, the system is able to discriminate between both of them.  
We have to underscore that in the training process we selected those signals with good 
signal to noise ratio. We did not consider signals with low quality or with uncertainties in 
the classification process. However, the system seems to be able to recognize these dubious 
signals. Therefore, the system helps us to correct omissions performed in the initial training 
process of the data base. In this sense, the insertions could be considered as successes rather 
than errors. This ability of the system to detect events that were not previously recognized 
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by the expert is a consequence of the modelling of the temporal evolution of the power 
spectra of the seismic events, while the training process is made exclusively attending to the 
time-domain waveforms. The fact that our overall success rate exceeds 80% reflects the 
robustness and effectiveness of the proposed methodology. 
We wondered if the recognition data base designed using data from a particular volcano 
and eruptive period could be applied to other volcanoes or different eruptive episodes. In 
the present work, we have used separately two data base from San Cristóbal and Telica 
volcanoes. To answer this question, we performed an experiment consisting in the mixing of 
both data bases, and its application to the discrimination of seismic signals from both 
volcanoes. There are nine event types in this new data base: S1, S2, S3 and San Cristóbal 
noise (NS), T1, T2, T3, T4 and Telica Noise (NT). The results are show in Tables VII and VIII. 
From these results, we conclude that: (a) We do not observe confusion or mixing in the 
event classification, that is, no event of San Cristóbal was identified as Telica event and 
viceversa; (b) The events of San Cristóbal was identified separately from the events of Telica; 
(c) We maintained the same high accuracy rate than in the previous experiments. It is 
remarkable that when we have mixed both data base we do not have confusion between all 
the signals. Also we point out that it is not possible to use the data base trained for San 
Cristóbal to recognize events of Telica, and viceversa. Thus each volcano and signal require 
an specific training process. 
Finally, we conclude that the recognition and classification system based on HMM is a 
powerful, effective and successful tool. From the application performed over data belonging 
to two active volcanoes (San Cristóbal and Telica), we have demonstrated that in order to 
have a reliable result, it is necessary a careful and adequate segmentation process. Also, we 
proved that each type of signals requires its own characterization. That is, each signal type 
must be represented by its own specific model, which would include the effects of source, 
path and sites. Once we have built this model, the success level of the system is high. 
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1. Introduction

Air quality standards are referred to thresholds above which pollutants concentrations are
considered to have serious effects on human health and the environment (World Health
Organization, 2006). In urban areas, exceedances are usually recorded through a monitoring
network, where concentrations of a number of pollutants aremeasured at different sites. Daily
occurrences of exceedances of standards are routinely exploited by environmental agencies
such as the US EPA and the EEA, to compute air quality indexes, to determine compliance
with air quality regulations, to study short/long-term effects of air pollution exposure, to
communicate air conditions to the general public and to address issues of environmental
justice.
The statistical analysis of urban exceedances data is however complicated by a number of
methodological issues. First, data can be heterogeneous because stations are often located
in areas that are exposed to different sources of pollution. Second, data can be unbalanced
because the pollutants of interest are often not measured by all the stations of the network
and some stations are not in operation (e.g. for malfunctioning or maintenance) during part
of the observation period. Third, exceedances data are typically dependent at different levels:
multi-pollutants exceedances are not only often associated at the station level, but also at a
temporal level, because exceedances may be persistent or transient according to the general
state of the air and time-varying weather conditions may influence the temporal pattern of
pollution episodes in different ways.
Non-homogeneous hidden Markov (NHHM) models provide a flexible strategy to estimate
multi-pollutant exceedances probabilities, conditionally on time-varying factors that may
influence the occurrence and the persistence of pollution episodes, and simultaneously
accomodating for heterogeneous, unbalanced and temporally dependent data.
In this paper, we propose to model daily multi-pollutant exceedances data by a mixture
of logistic regressions, whose mixing weights indicate probabilities of a number of air
quality regimes (latent classes). Transition from one regime to another is governed by a
non-homogeneous Markov chain, whose transition probabilities depend on time-varying
meteorological covariates, through a multinomial logistic regression model. When these
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covariates are suitably chosen for measuring the amount of atmospheric turbolence,
parameters of the multinomial logistic model indicate the influence of atmospheric
stability on both the occurrence of typical pollution episodes and the persistence of these
episodes. Conditionally on the latent class, exceedances are assumed independent and
pollutant-specific exceedances probabilities depend on covariates that are proxies of the
production of pollution. Because the information provided by these proxies is typically
poor, latent classes accomodate for the influence of unobserved sources of pollution and,
simultaneously, account for the dependence between multi-pollutant exceedances that were
observed during the same day.
NHHM models generalize the class of homogeneous hidden Markov (HHM) models that are
extensively discussed byMacDonald and Zucchini (1997). HHMmodels assume that the data
are conditionally independent given the states of a (latent) homogeneous Markov chain and
provide a flexible approach to model stationary categorical time series. An NHHM model
is obtained as a generalization of a HHM model, by allowing the transition probabilities
to be time-varying. On the other side, NHHM models generalize the class of mixtures of
regression models with concomitant variables (Wang and Putermann, 1998), to allow for
temporal dependence.
NHHM models have been already considered in the literature by several authors. Diebolt et
al. (1994) have considered maximum likelihood estimation of the simple two-state Gaussian
hidden Markov model with time-varying transition matrix. Applications of hidden Markov
models with time-varying transitions include Durland and McCurdy (1994), Gray (1996),
Peria (2002), Masson and Ruge-Murcia (2005), Kim et al. (2008), and Banachewicz et al. (2007).
Wong and Li (2001) have considered a two-state non-homogeneousMarkov switchingmixture
autoregressivemodel. All the above papers adopt classical inferential procedures. A Bayesian
approach to inference for non-homogeneous hidden Markov model has been proposed by
Filardo and Gordon (1998) and Meligkotsidou and Dellaportas (2010).
In environmental studies, NHHMmodels have found widespread application in meteorology
and hydrology, in studies of climate variability or climate change, and in statistical
downscaling of daily precipitation from observed and numerical climate model simulations
(see, e.g., Zucchini and Guttorp 1991; Hughes and Guttorp 1994; Hughes et al. 1999; Charles
et al. 1999; Bellone et al. 2000; Charles et al. 2004; Robertson et al. 2004; Betrò et al. 2008).
Fewer are the applications of homogeneous and non-homogeneous hidden Markov models
in air quality studies, where this methodology has been mainly applied to study univariate
pollutants concentrations under the assumption of normally-distributed data (Spezia, 2006;
Dong et al., 2009) or to estimate exceedances probabilities (Lagona, 2005).
After describing the environmental data used in this study (Section 2), the specification of a
NHHM for pollutants exceedances and the discussion of relevant computational details for
estimation are outlined in Section 3. Section 4 illustrates an application to exceedances data
of ozone, particulate and nitrogen dioxide, obtained from the monitoring network of Rome.
Section 5 finally provides some concluding remarks.

2. Data

Our analysis is based on binary time series of occurrences and non occurrences of exceedances
of air quality standards, as computed from hourly pollutants concentrations that are typically
available from the monitoring network in an urban area.
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station type PM10 NO2 O3
Preneste residential 34 2
Francia traffic 3 73

Magna Grecia traffic 4 45
Cinecittà residential 27 3 51
Villa Ada residential 21 0 14

Castel Guido rural 5 0
Cavaliere rural 3 0
Fermi traffic 22 64

Bufalotta residential 16 0 18
Cipro residential 7 2 31

Tiburtina traffic 9 70
Arenula residential 0 35

Table 1. Number of violations in 2009

In the application discussed in the present paper, we considered the concentrations data of
particulate matter (PM10), nitrogen dioxide (NO2) and ozone (O3), reported by the monitoring
network of Rome (Italy) in 2009. These data are disseminated by the Environmental Protection
Agency of the Lazio region (www.arpalazio.net/main/aria/). While six stations of the
network are located in residential areas with moderate traffic, four stations are close to heavy
traffic roads and two stations are located in rural areas.
Violations of air quality standards are defined differently for each pollutant, because most of
the current legislation considers air quality standards separately for each pollutant. According
to the most recent legislation, we recorded the day and the station where (i) the 24-hour
average concentration of particulate matter was above the threshold of 50μg/m3, (ii) the
maximum hourly concentration of nitrogen dioxide was above the level of 200 μg/m3 and
(iii) the maximum 8-hour moving average of ozone concentrations exceeded the level of 120
μg/m3.
Table 1 displays the number of violations of the above standards, observed at the monitoring
network in 2009. Empty cells indicate structural zeros, which are observed when a particular
pollutant is not measured by the station. As expected, particulate and nitrogen dioxide exceed
the standard in the neighborhood of traffic roads at a rate that is larger than that observed in
residential areas, while most of the violations of ozone are observed in residential areas.
Although tables such as Table 1 are routinely reported to communicate the state of the air
to the general public and to determine compliance with environmental regulations, these
counts should be interpreted with caution, for a number of different reasons. First, some
of the stations were not in operation during parts of the study period and hence the data
are based on a time-varying number of stations. Second, the occurrence of exceedances is
not only influenced by the location of the monitoring station but also by weather conditions.
For example, global radiation and wind speed regulate the amount of atmospheric stability
and can be responsible for stagnation or dispersion of pollutant concentrations. Atmospheric
stability, i.e. the tendency of the atmosphere to resist or enhance turbulence, is related to
both , global radiation and wind speed, leading to several stability classes. Stability classes
are defined for different meteorological situations, characterized by wind speed and solar
radiation (during the day) and can be classified according to the so-called Pasquill-Turner
classification (Turner, 1994) As a result, these counts should be adjusted not only by the
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type of the station but also by weather conditions. This adjustment can be important when
comparing exceedances data of several urban areas to address issues of environmental justice.
We accordingly included daily means of wind speed and radiation into our analysis of
exceedances data, as obtained by one of the most authoritative meteorological station in Rome
(Collegio Romano, www.cra-cma.it/cromano.html).

3. A non-homogeneous hidden Markov model for binary data

Time series of exceedances data can be represented as a vector of n× H binary matrices, say
Y = (Yt, t = 0, 1, . . . T), where the (i, h)th element yiht of matrix Yt is equal to 1 if the hth
event occurred in unit i at time t and 0 otherwise, i = 1 . . . n, h = 1 . . . H.
We introduce a latent vector s = (st, t = 0, 1, . . . T), drawn from a vector S =
(St, t = 0, 1, . . . T) of discrete random variables St that take K categorical values. The product
sample space of S, say S, includes KT vectors. Without loss of generality, we write
the distribution of the observed data, say P(Y ), as a mixture of conditional multivariate
distributions, say

p(Y) = ∑
s∈S

p(Y, s) = ∑
s∈S

p(Y|s)p(s).

As a result, the marginal covariance between two occurrences, say Yiht and Yjkτ, is given by

γ(i, j, h, k, t, τ) =EYihtYjkτ −EYihtEYjkτ

= ∑
Y(i,h,t),(j,k,τ)

p(Y )− ∑
Y(i,h,t)

p(Y ) ∑
Y(j,k,τ)

p(Y ),

where Y(i,h,t),(j,k,τ) indicates any matrix Y with yiht = yjkτ = 1 and, analogously, Y(i,h,t)
(Y(j,k,τ)) indicates any matrix Y with yiht = 1 (yjkτ = 1). These covariances can be arranged
in a Γ blocks-matrix Γ = (Γt,τ; t, τ = 0, 1 . . . T), whose diagonal blocks, Γtt, describe the
covariance structure between contemporary occurrences, while the off-diagonal blocks, Γtτ ,
describe the autocovariances and the cross-autocovariances of the multivariate time series.
The above mixture is called HHM model when

1. exceedances patterns are conditionally independent given the latent states (conditional
independence assumption), namely

p(Y|s) =
T

∏
t=0

p(Yt|s) =
T

∏
t=0

p(Yt|st) (1)

2. and the latent vector s is sampled from a Markov chain, namely

p(s) = δs

T

∏
t=1

p(st−1, st),

where δs = p(S0 = s) and the transition probabilities p(st−1, st) = P(St = st|St−1 = st−1)
do not vary with time (homogeneity assumption).

In a HHM model, multivariate time series data are therefore modeled by a mixture
of multivariate distributions, whose parameters depend on the stochastic evolution of a
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unobserved Markov chain. As a result, the hidden states of the chain can be interpreted as
different regimes at which multivariate exceedances occur.
From a technical viewpoint, an HHM model greatly reduces the number of unknown
parameters that drive the distribution of a multinomial time series. However, the K
conditional distributions p(Yt|St = s) still depend on (2I×J − 1)×K probabilities. Although a
saturated log-linear re-parametrization of these probabilities is in principle possible, it would
involve a model with high-order interactions that may be difficult to interpret. Moreover,
estimation of saturated models can be unstable if data are unbalanced, as often happens with
urban exceedances data. We therefore need to employ strategies to reduce the number of
parameters. A parsimonious model that accounts for the multi-pollutant nature of the data
and simultaneously allows for heterogeneous monitoring networks is a binary regression
model, where pollutant-specific exceedances probabilities vary with the monitoring station.
More precisely, we assume that

p(Yt|St = s) =
I

∏
i=1

J

∏
j=1

θ
yijt

ijs

(
1− θijs

)1−yijt
, (2)

where θijs is the conditional probability that pollutant j exceeds the standard at station i, under
regime s. Probabilities θijs can be re-parametrized in a number of different ways, depending
on the purpose of the analysis and the availability of specific covariates on single stations. In
our application, the following two-way logit model was exploited

logit θijs = β0s + βis + β′js, (3)

where β0s is a baseline parameter, while βis and β′js are respectively the station and the
pollutant effects under regime s, with the identifiability constraints β1s = β′1s = 0, for each
s = 1 . . . K.
Parameters in equation (3) model exceedances data within multinomial regimes. In a HHM
model, the temporal persistence of each regime during the period of interest is governed
by the homogeneous (i.e., time-constant) transition probabilities of a latent Markov chain.
Although at present the formation and evolution of air pollution episodes in urban areas is
only understood in general terms, it is well known that meteorological covariates may have a
significant influence on the persistence of exceedances, leading to a non-stationary behavior
of exceedances data. Motivated by this, we extend the HHM model framework to allow
for non-homogeneous transition probabilities that depend on a profile xt of meteorological
covariates. Specifically, we assume that latent vector s is drawn from a non-homogeneous
Markov chain with distribution

p(s) = δs

T

∏
t=1

p(st−1, st), (4)

and exploit a multinomial logit model to re-parametrize the time-varying transition
probabilities, as follows

pt(s, k) =
exp

(
γ0ks + xT

t γks
)

K
∑

h=1
exp

(
γ0hs + xT

t γhs
) , (5)
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where γ0ks is a baseline regime-specific effect (γ0ss = 0, for identifiability) and the vector
γks are regression coefficients that measure the effect of weather conditions on transition
probabilities.
Combining (2) and (4), we propose to model a time series of multivariate exceedances data by
the following marginal distribution:

p(Y|γ,β, δ) = ∑
s0

δ(s) ∑
s1...sT

T

∏
t=0

pt(st−1, st)
I

∏
i=1

J

∏
j=1

θ
yijt

ijs

(
1− θijs

)1−yijt
, (6)

known up to the parameters α,β, δ. The above distribution modularizes the dependency
structure of exceedance data, by separating temporal dependence, multivariate dependence,
and non-stationary behavior. More precisely, the marginal covariance matrix of the
multinomial time seriesY can be viewed as a blocks-matrix Σ = (Σt,τ; t, τ = 0, 1 . . . T), whose
diagonal blocks, Σtt, describe the association between contemporary exceedances, while the
off-diagonal blocks, Σtτ, describe the autocovariances and the cross-autocovariances of the
multivariate time series. In particular, the generic element of Σtt is the (marginal) covariance
between the exceedances of two pollutants j and l, recorded at two stations i and m at the
same time t, namely

σijlm(t) =p(yijt = 1, ylmt = 1)

=
K

∑
k=1

πk(t)θijkθlmk −
(

K

∑
k=1

πk(t)θijk

)(
K

∑
k=1

πk(t)θlmk

)
, (7)

where

πk(t) = p(St = k) = ∑
s0:t−1

δs0

t−1
∏
τ=1

pτ(sτ−1, sτ)pt(st−1,k)

is the (time-varying) marginal probability for the latent chain of being in state k at time t. In
general, for two different times t and τ, the generic element of matrix Σtτ is given by

σijlm(t, τ) =p(yijt = 1, ylmτ = 1)

=
1...K

∑
k,h

πkh(t, τ)θijkθlmh −
(

K

∑
k=1

πk(t)θijk

)(
K

∑
h=1

πh(τ)θlmh

)
, (8)

where

πk,h(t, τ) = p(St = k, Sτ = h) = ∑
st:τ−1

πk(t)
τ−1
∏

τ′=1
pτ′ (sτ′−1, s′τ)pτ(sτ−1, h)

is the joint probability for regimes k and h to act at times t and τ, respectively.
Examination of the above covariances clearly illustrates that model (6) includes, as particular
cases, a number of simpler models that could be used for examining multivariate pollutants
exceedances. For example, when the transition probability matrix takes a diagonal form,
model (6) reduces to a simple mixture of K generalized linear models with concomitant
variables (Wang and Putermann, 1998), which could be used when the data do not show a
significant temporal dependency structure. When, additionally, K = 1, model (6) degenerates
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to a logistic regression model for multivariate pollutants exceedances (Kutchenhoff and
Thamerus, 1996), which can be exploited under a strong homogeneity of the data.
We take a maximum likelihood approach to estimate the parameters of the proposed
NHHM model. To account for the presence of missing values, our analysis is based on the
maximization of the log-likelihood function that is obtained by marginalizing (6) with respect
to the missing values, namely

l(γ,β, δ|Yobs) = ∑
Ymis

log p(Y |γ,β, δ), (9)

where Ymis and Yobs denote the arrays of the missing and observed values, respectively. We
recall the conditional independence that in our NHHM model holds between exceedances
within the same latent state. As a result, the contribution of each missing value to
l(γ,β, δ|Yobs) is equal to 1. By introducing a missing indicator variable (rijt = 1 if yijt is
missing and 0 otherwise), the log-likelihood function that we maximize is thus finally given
by

l(γ,β, δ|Yobs) = log∑
s0

δ(s) ∑
s1...sT

T

∏
t=0

pt(st−1, st)
I

∏
i=1

J

∏
j=1

(
θ

yijt

ijs

(
1− θijs

)1−yijt
)rijt

. (10)

In the hidden-Markov-models literature, maximization of (10) is essentially based on the EM
algorithm (see e.g. MacDonald and Zucchini, 1997; Cappé et al., 2005; and reference therein for
details about the algorithm). As it stands, expression (10) is of little or no computational use,
because it has KT+1 terms and cannot be evaluated except for very small T. Clearly, a more
efficient procedure is needed to perform the calculation of the likelihood. The problem of
computing these factors may be addressed through the Forward-Backward procedure (Baum
et al., 1970; for a brief review see Welch, 2003).
We point out that the estimation algorithm involves the iterative evaluation of the solutions
of the weighted score equations:

T

∑
t=1

K

∑
k=1

K

∑
s=1

Pr(St+1 = k, St = j | Yobs, θ̂)
∂ log pt(s, k)

∂γ
= 0; (11)

and
T

∑
t=1

K

∑
k=1

Pr(St = s | Yobs, θ̂)
∂ log f (Yt | St = s)

∂β
, (12)

where θ̂ = (β̂, γ̂) are the estimates found at a previous iteration. The above equations are the
score equations of generalized linear models (GLM) with weights Pr(St+1 = k, St = j | y) and
Pr(St = s | y) respectively. Parameter estimates can therefore immediately be estimated by
exploiting any GLM software, by simply including a component factor in a generalized linear
model as suggested by Hinde and Wood (1987), which is conveniently (even if inefficiently)
handled by augmenting the data matrix.
The E- and M-steps are repeatedly alternated until the log-likelihood (relative) difference
changes by an arbitrarily small amount.
However, while the EM algorithm is useful for obtaining maximum likelihood estimates in
such situations, it does not readily provide standard errors for parameters estimates.
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We computed standard errors of parameter estimates using parametric bootstrap (Efron and
Tibshirani, 1993), as standard errors based on the observed information matrix are often
unstable (see e.g. McLachlan and Peel 2000). Specifically, we re-fitted the model to the
bootstrap data that were simulated from the estimated model. This process was repeated
R times, and the approximate standard error of each model parameter κ was computed by

ŝeR =

{
1

R− 1

R

∑
r=1

[κ̂(r)− κ(R)]2
}1/2

, (13)

where κ̂(r) is the estimate from the r-th bootstrap sample and κ(R) is the sample mean of all
κ̂(r).
In a general framework, there are at least three different methods for computing standard
errors (and confidence intervals) of hidden Markov model parameters, namely likelihood
profiling, bootstrapping and a method based on a finite difference approximation to the
Hessian (Visser et al., 2000). In this paper we adopt the parametric bootstrap approach
generating bootstrap samples according to the parametric model using the maximum
likelihood estimates of the parameters. Our choice is due to both the simplicity of
implementing the parametric bootstrap and the results produced by this procedure. As shown
by Visser et al. (2000), in the context of long time series (i.e. T > 100) computing the
exact Hessian is not feasible and, via a simulation study, it can be proved that likelihood
profiling and bootstrapping produce similar results, whereas the standard errors from the
finite-differences approximation of the Hessian are mostly too small.
However, in the general hidden Markov model framework assessing the uncertainty about
parameters can be difficult, as bootstrapping typically relabels states in different ways: the
role of states can be exchanged at each simulation. Problems due to label switching will be
most acute when data are not informative about the transition matrices.
There are several possible solutions to this label switching problem, motivated by the
literature on mixture distributions (see e.g. Richardson and Green, 1997; Celeux, 1998;
Boys et al., 2000; Spezia, 2009). The label switching problem can be tackled by placing an
identifiability constraint on some parameter. This operation can be risky if no information
on the ordering constraint is available to the investigator; so, the parameter space can
be truncated wrongly and, consequently, estimators are biased. Hence, the identifiability
constraint can be placed when the regimes are well separated, only.
Bayesian information criterion (BIC) is used to compare the models. Selecting an NHHM
model that minimizes the BIC provides a relatively parsimonious model that fits the data
well. The final decision on how many and which of the resulting summary variables are to
be included in the model is evaluated in terms of physical realism, distinctness of the weather
state patterns and model interpretation.

4. Results

We have estimated a number of differentNHHMmodels from the exceedances data described
in Section 2, by varying the number K of states of the latent chain. This section presents the
results obtained by a three-states model, which was chosen on the basis of the BIC statistic,
the degree of separation of latent classes and the physical meaning of the parameters.
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The posterior probabilities of the three states (Figure 1 ) show that the three latent classes
are well separated and that days can be clustered according to their maximum posterior
probabilities of class membership. The resulting classification is intuitively appealing (Figure
2): under state 1, pollution episodes are mainly characterized by ozone exceedances, while
state 3 is dominated by exceedances of particulate matter and a few violations of the nitrogen
dioxide standard; finally, state 2 clusters days with acceptable air conditions. We however
remark that days are clustered by jointly modeling the exceedances probabilities of the
three pollutants and simultaneously accounting for the type of monitoring station where
violations of standards are observed. Table 2 shows the estimated effects on the conditional
exceedances probabilities, for each state. Effects are displayed by taking the log-odds of a
particulate exceedance in a moderate traffic station as baseline. Under state 1 the log-odds
of an exceedance of ozone are greater than the log-odds of an exceedance of the other two
pollutants. The situation is reversed under state 3, where particulate and nitrogen dioxide
dominate the probability of a pollution episode. As expected, the exposure to pollution
sources is strongly significant only when a pollution episode occur (i.e., under state 1 or 3).
When, conversely, the quality of the air is acceptable, most of the stations are likely to report
concentrations that are below the standard, regardless of the locations where measurements
are made. However, when a pollution episode occurs, the expected number of violations
depends on the distribution of the type of monitoring sites that are functioning. As a result,
when a few violations occur, the model predicts a serious pollution episode only when
exceedances are observed in locations that are exposed to low pollution sources. This explains
why days with a similar number of exceedances are given a different class membership by the
model (Figure 2).
The estimated transition probabilities of the latent chain, varying with weather conditions, are
depicted in Figure 3, according to the origin state (columns) and the destination state (rows).
Examining the pictures in the second row of the figure, we observe that a regime of acceptable
air quality (state 2) is persistent during the whole year, as indicated by the large probabilities
of remaining in state 2 (middle picture). As a result, the probabilities of moving from state 2 to
a different state are generally low. As expected, while the probability of moving from state 2 to
state 1 (ozone episodes) increases during the warm seasons, moderate probabilities of moving
to state 3 (particulate and nitrogen dioxide episodes) increase during the cold seasons. The
high variability of the probabilities of remaining in state 1 (first row, left) and in state 3 (third
row, right) confirm that pollution episodes, as measured by the number of exceedances, were
not persistent during the period of interest.
Figure 3 has been computed by exploiting the estimates of Table 3, which display the
log-odds of conditional transition probabilities of the latent chain, by taking the probability
of remaining in the same state as a reference. Examination of the second column of this
table shows that the probability of moving from a state of good air quality to a pollution
episode decreases at high wind speed, in keeping with the known role that the wind plays
in the dispersion of pollutants. On the contrary, solar radiation has a positive effect on the
probability to move to ozone episodes, occurring in summer, and a negative effect on the
probability to move to episodes of particular matter and nitrogen dioxide, which occur during
the cold seasons. The estimates of the first column of the table confirm that, when wind speed
increases, the probability to move from state 1 to a state of acceptable air quality is much
greater than that of moving to a ozone episode. Interestingly, global radiation has a negative
effect on a transition from state 1. Particularly in winter, when state 1 is often reached, high

215A Non-Homogeneous Hidden Markov Model for the Analysis of Multi-Pollutant Exceedances Data



estimate state 1 state 2 state 3
intercept -3.4993 -4.0985 0.4709

(0.3381) (0.1592) (0.0900)
low emission -2.7563 -0.2737 -14.0231

(0.4545) (0.7789) (3.4449)
ozone 3.9124 -2.2011 -18.2600

(0.3724) (0.6044) (3.4433)
nitrogen dioxide -1.6443 -1.7206 -3.3205

(0.7845) (0.3790) (0.2037)

Table 2. Log-odds of exceedances probabilities (standard errors in brackets)

destination origin
state 1 state 2 state 3

state 1 0 -11.3842 -19.1536
(1.0768) (2.3051)

intercepts state 2 5.8137 0 -1.8993
(1.6782) (0.3318)

state 3 9.5675 0.8748 0
(2.3389) (0.3204)

state 1 0 -0.5000 -0.7198
(0.0384) (0.0502)

wind speed state 2 -1.1085 0 2.2761
(0.6023) (0.0925)

state 3 -4.3735 -1.2730 0
(1.1265) 0.0916

state 1 0 0.3808 0.6482
(0.0348) (0.0092)

global radiation state 2 -0.1891 0 -0.1539
(0.0195) (0.0976)

state 3 -0.4796 -0.1132 0
(0.1211) (0.0201)

Table 3. Log-odds of transition probabilities (standard errors in brackets)

levels of solar radiation create in the atmosphere the phenomenon of thermal inversion (a
layer of warm air settles over a layer of cold air) preventing the mixing up among the different
layers of the air, due to the convective currents, and, as a result, preventing pollutants from
rising and scattering. Finally, the estimates in column three of the table indicate the influence
of weather conditions on the probability to move from state 3, which occurs in summer. As
expected, while wind speed is associated with an increasing probability to return to a regime
of clean air, an increase in the levels of global radiation negatively influences the chances for
the system to return to a state of acceptable air conditions.

5. Discussion

Although most of the current legislation considers air quality standards separately for each
pollutant, recent studies stress the importance of a joint examination of exceedances with
respect to several air pollutants. When we face multivariate variables, and the primary focus
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Fig. 1. posterior state probabilities, as estimated by a three-state non-homogeneous hidden
Markov model.
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Fig. 2. observed exceedances proportions of three pollutants, clustered according to their
posterior state probabilities, as estimated by a three-state non-homogeneous hidden Markov
model; state 1 (black), state 2 (blue), state 3 (red).
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Fig. 3. Probabilities of transition from one state to another state, as estimated by a three-state
non homogeneous hidden Markov model.

of the analysis is not only to build a regressionmodel, but even to describe association among
variables, the univariate approach is no longer sufficient and needs to be extended. In this
context, we are likely to face complex phenomena which can be characterized by having a
non-trivial correlation structure (e.g. omitted covariates may affect more than one variable),
which can be captured by introducing a latent structure. Furthermore, it is well known that,
when responses are correlated, the univariate approach is less efficient than the multivariate
one.
To estimate multivariate exceedances probabilities, we have fitted a NHHM model to a
time series of multivariate exceedances data. Non-homogeneous hidden Markov models
are parsimonious specification of non-stationary time series and can be generalized along
a number of dimensions, to accommodate continuous or discrete multivariate data and
modularize the data dependence structure of the data according to the purpose of an analysis.
In our case study, a NHHM model provides a parsimonious representation of a time series of
multivariate exceedances by means of three latent regimes that are temporally persistent or
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transient, according to time-varying weather conditions. Estimates of the effects of factors
that may influence both the occurrence and the persistence of specific exceedances are in
terms of log-odds, which helps to communicate results to nonspecialists. The clear-cut
separation of the three latent classes supports a model-based clustering of days into periods
of severe pollution episodes and periods of reasonable quality of the air. Estimated transition
probabilities allow to interpret the persistence of pollution episodes in terms of the general
conditions of the weather in the area of interest.
The NHHM model presented in this paper provides a model-based clustering of days,
according to different patterns of multi-pollutants exceedances probabilities. Estimated
posterior probabilities of the two latent regimes can be then interpreted as an air quality index,
which exploits maximum likelihood estimates to provide a daily summary of multivariate
exceedances data. Model-based air quality indexes are certainly more difficult to explain to
the general public than data-driven indexes that are based on a deterministic aggregation of
the hourly measurements on each pollutant at every site in a monitoring network. However
a data-driven approach (Bruno and Cocchi, 2002) does not use probabilistic assumptions on
the data generating process, and, as a result, there are no obvious methods either to construct
these indexes in the presence of missing data or to predict their values.
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1. Introduction 
There is an enormous volume of literature on the applications of Hidden Markov Models 
(HMMs) to a broad range of pattern recognition tasks. The first practical application of 
HMMs is much based on the work of Rabiner et al (Lawrence & Rabiner, 1989) for speech 
recognition. Since then, HMMs have been extensively used in various scientific fields such 
as computational biology, biomedical signal interpretation, image classification and 
segmentation, etc.  
An HMM can be described as a stochastic finite-state automation that can be used to model 
time sequential data. In general, there are four basic parts involved in the HMM: namely 
states, initial state distribution, state transition matrix, and state observation matrix. A state 
represents a property or condition that an HMM might have at a particular time. Initial state 
distribution indicates each state probability of an HMM at the time of starting the modeling 
procedure of an event. The state transition matrix represents the probabilities among the 
states. The observation matrix contains the observation probabilities from each state. Once 
the architecture of an HMM is defined with the four essential components, training of the 
HMM is required. To train, the first step is to classify features into a specific number of 
clusters, generating a codebook. Then from the codebook, symbol sequences are generated 
through vector quantization. These symbol sequences later are used to model 
spatiotemporal patterns in an HMM. The number of states and initial state distribution of 
HMM are empirically determined in general. The state transition and observation 
probabilities from each state are usually initialized with uniform distributions and later 
adapted according to the training symbol sequences. In practice, there are some well-
established training algorithms available to automatically optimize the parameters of the 
HMM. The Baum–Welch (Baum et al., 1970) training procedure is a standard algorithm 
which uses the Maximum Likelihood Estimation (MLE) criterion. In this training algorithm, 
the training symbol sequences are used to estimate the HMM parameters. Finally, a testing 
sequence gets analyzed by the trained HMMs to be recognized.  
In an HMM, the underlying processes are usually not observable, but they can be observed 
through another set of stochastic processes that produces continuous or discrete 
observations (Lawrence & Rabiner, 1989), which lead to discrete or continuous HMMs 
respectively. In the discrete HMMs, the observation sequences are vector-quantized using a 
codebook to select discrete symbols. Though the discrete symbols for the observations 
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simplify the modeling, they have limited representation power. As the discrete symbols are 
obtained from the codebook, which is generated using some unsupervised classification 
algorithm such as the K-means (Kanungu et al., 2000) or the Linde, Buzo, and Gray (LBG)’s 
clustering algorithm (Linde et al., 1980), the quantized vectors may not be accurate: the 
quantized vectors represent incorrect symbols sometimes. In fact, modeling of an event is 
very much dependent on the codebook generation process in the discrete HMM that may 
result in unsatisfactory results. To mitigate this problem, continuous probability distribution 
functions for the observations can be used to model the time-sequential information that 
enables to get a model as accurate as possible. In the continuous HMMs, the observation 
probability distribution functions are a mixture multivariate of Gaussians. The architecture 
of a continuous HMM, the number of Gaussian components per state, and the number of 
training iterations are usually empirically determined. Once the event is modeled by the 
continuous HMM, one can calculate the probabilities of the observation sequence and the 
probable underlying state sequences. The principal advantage of using the continuous 
HMM is the ability to model the event directly without involving vector quantization. 
However, the continuous HMM requires much longer training and recognition time, 
especially when a mixture of several Gaussian probability density components is used.  
Among a wide range of application areas in which HMMs have been applied to recognize 
complex time-sequential events, human activity recognition (HAR) is one active area that 
utilizes spatio-temporal information from video to recognize various human activities. In 
this video-based HAR methodology, it is essential to model and recognize key features from 
time sequential activity images in which various activities are represented in time-sequential 
spatial silhouettes. Once the silhouettes from the activity video images are obtained, each 
activity is recognized by comparing with the trained activity features. Thus, feature 
extraction, learning, and recognition play vital roles in this regard. In the video-based HAR, 
binary silhouettes are most commonly employed where useful features are derived from 
activity videos to represent different human activities (Yamato et al., 1992; Cohen & Lim, 
2003; Niu & Abdel-mottaleb, 2004; Niu & Abdel-mottaleb, 2005; Agarwal & Triggs, 2006; 
Uddin et al., 2008a). To extract the human activity silhouette features, the most popular 
feature extraction technique applied in the video-based HAR is Principal Component 
Analysis (PCA) (Niu & Abdel-Mottaleb, 2004; Niu & Abdel-Mottaleb, 2005). PCA is an 
unsupervised second order statistical approach to find useful basis for data representation. 
It finds PCs at the optimally reduced dimension of the input. For human activity 
recognition, it focuses on the global information of the binary silhouettes, which has been 
actively applied. However, PCA is only limited to second order statistical analysis, allowing 
up to decorrelation of data. Lately, a higher order statistical method called Independent 
Component Analysis (ICA) is being actively exploited in the face recognition area (Bartlett et 
al., 2002; Kwak & Pedrycz, 2007; Yang et al., 2005) and has shown superior performance 
over PCA. It has also been utilized successfully in other fields such as speech recognition 
(Kwon & Lee, 2004). In (Uddin et al., 2008a), we introduced local binary silhouette features 
through ICA to represent human body in different activities usefully. To extend the IC 
features, we applied Linear Discriminant Analysis (LDA) on them to build more robust 
features and applied for improved HAR. To model the time-sequential human activity 
features, HMMs have been used effectively in many works (Yamato et al., 1992; Sun et al., 
2002; Nakata, 2006; Niu & Abdel-Mottaleb, 2004; Niu & Abdel-Mottaleb, 2005; Uddin et al., 
2008a; Uddin et al., 2008b). In (Yamato et al., 1992), the binary silhouettes were employed to 
develop some distinct discrete HMMs for different activities. In (Uddin et al., 2008a) and 
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(Uddin et al., 2008b), we applied the discrete HMM to train and recognize different human 
activities from binary and depth silhouettes features respectively. Continuous HMMs have 
also been applied in numerous HAR works (Sun et al., 2002; Niu & Abdel-mottaleb, 2004; 
Niu & Abdel-mottaleb, 2005; Nakata, 2006). In (Sun et al., 2002) and (Nakata, 2006), the 
authors utilized optical flows to build continuous HMMs for recognition. In (Niu & Abdel-
Mottaleb, 2004) and (Niu & Abdel-Mottaleb, 2005), the authors applied binary silhouette 
and optical flow motion features in combination with continuous HMM to recognize 
different human activities. 
Although the binary silhouettes are very commonly employed to represent a wide variety of 
body configurations, it sometimes produces ambiguities by representing the same silhouette 
for different postures from different activities. For instance, if a person performs some hand 
movement activities in the direction toward the camera, different postures can correspond 
to the same silhouette due to its binary-level (i.e., white or black) pixel intensity distribution. 
One example is shown in Fig. 1, which shows the RGB, binary, and depth images of right 
hand-up-down, left hand-up-down, both hands-up-down, clapping, and boxing activity 
respectively. It is obvious that the binary silhouettes are a poor choice to separate these 
different postures. Besides, from the binary silhouettes, it is not possible to obtain the 
difference between the far and near parts of human body in the activity video. For better 
silhouette representation than binary, in (Uddin et al., 2008b), we proposed IC features from 
the time-sequential depth silhouettes to be used with the discrete HMMs for robust HAR. 
The depth silhouettes better represent the human body postures than the binary by 
differentiating the body parts by means of different depth values. Thus, depth silhouettes 
can be utilized to overcome the aforementioned limitations available in binary silhouettes.  
In this chapter, with a brief introduction of HMMs, especially the continuous HMM, we 
present its application to model various human activities based on the spatio-temporal 
depth silhouette features. Then, we show how to recognize various human activities from 
time-series depth maps (i.e., depth videos) of human activities. We demonstrate that 
superior recognition can be achieved by means of the continuous HMM and depth 
silhouette features in recognizing various human activities, which are not easily discernible 
with binary silhouettes. One of the aims of our HAR system is to be used in smart homes to 
monitor and recognize important daily human activities. This should allow continuous 
daily, monthly, and yearly analysis of human activity patterns, habits, and needs. In 
addition, when any abnormal activity is recognized, the system can automatically generate 
an alarm to draw attention of the smart home inhabitants to draw their attention to avoid 
unexpected injury and to provide assistance if needed. 
The remaining sections of this chapter are structured as follows. Section 2 describes the 
basics of continuous HMMs. Section 3 explains the methodology of the HAR system from 
video image acquisition and depth silhouette feature extraction to modeling and training 
activity continuous HMMs for recognition. Section 4 shows the experimental results 
utilizing different feature extraction approaches with HMMs. Finally, Section 5 draws the 
concluding remarks. 

2. Continuous Hidden Markov Model 
HMM is considered to be one of the most suitable techniques for modeling and recognizing 
time sequential features (Lawrence & Rabiner, 1989; Kwon & Lee, 2004). Basically, a 
continuous HMM consists of two interrelated processes. The first process is related to an 
underlying, unobservable Markov chain with a finite number of states, a state transition 
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Fig. 1. RGB and their corresponding binary and depth images of (a)-(c) right hand-up-down, 
(d)-(f) left hand-up-down, (g)-(i) both hands-up-down, (j)-(l) clapping, and (m)-(o) boxing 
activity respectively. 

probability, and an initial state probability distribution. The second consists of a set of 
density functions representing the observations associated with each state. As a continuous 
HMM can decode the time-sequential continuous information, it has been applied in many 
important applications such as speech recognition (Lawrence & Rabiner, 1989), human 
activity recognition (Sun et al., 2002), gesture recognition (Frolov et al., 2008) etc. A 
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continuous HMM denoted as { , , , }H A Bπ= Ξ  can be expressed as follows. 

1 2{ }, ,..., qΞ = Ξ Ξ Ξ indicates the states where q  is the number of states. The state of the model 
at time t  can be expressed as ,  1t TtΩ ∈Ξ ≤ ≤  where T  is the length of the observation 
sequence. The initial probability of the states π  can be represented as 

 
q

j=1

{ },  1.j jπ π π= =∑  (1) 

The state transition probability matrix is denoted as A  where ija  denotes the probability of 
a changing state from i  to j  i.e., 

 , 1P (  |  ),   1 ,  ,i j j t ita q i j q+= Ω = Ξ = Ξ ≤ ≤  (2) 

 ,
j=1

 1,   1 .i j

q

a i q= ≤ ≤∑  (3) 

The observation probability matrix is denoted as B  where the probability ( )jb d  represents 
the probability of observing d  from a state j  that can be expressed as 

 b ( ) P (  |  ),   1 .j t t jd O d j q= = Ω = Ξ ≤ ≤  (4) 

Though there are various types of HMMs (Lawrence & Rabiner, 1989), one of the popular 
HMMs is the left-to-right model as shown in Fig. 2. In this model, the initial probability of 
the states π  be initialized as {1,0,0,0} if there are four states and the modeling procedure is 
to be started from the first state. The transition matrix A  can be initialized according to the 
transition between the states. The initial transitions can be uniformly distributed based on 
the connections between the states. Thus, the transition matrix can be represented as  

 

0.333 0.333 0.333 0
0 0.333 0.333 0.333
0 0 0.5 0 .5
0 0 0 1

A

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (5) 
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a13 a24

a11
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a22
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a33 a44

a34

 
Fig. 2. A four state left-to-right HMM.  
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In the continuous observation probability density function matrix ,B  the commonly used 
distribution to describe the observation densities is the Gaussian one. To represent the 
continuous observation probability matrix, the mean and covariance are utilized. Weight 
coefficients are necessary to use during the mixture of the probability density function (pdf). 
Thus, the observation probability of tO at time t  from state j can be represented as  

 , ,
1

( ) ( ), 1 ,
M

j t j k j k t
k

b O b O j qc
=

= ≤ ≤∑  (6) 

 ,
1

1, 1
M

j k
k

c j q
=

= ≤ ≤∑  (7) 

where c represents the weighting coefficients, M the number of mixtures, and tO  the 
observation feature vector at time .t  The Baum-Welch algorithm (Baum et al., 1970) can be 
applied to estimate the HMM parameters as  
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where ( )t iγ  represents the probability of staying in the state i  at time .t  ( , )t i jγ  is 
the probability of staying in a state i  at time t  and a state j  at time 1.t + α  and β  are 
the forward and backward variables respectively. T contains the length of the observation 
sequence. , ( )j k tg O indicates thk mixture component probability at time t , P  dimension 
of the observation feature vector, and ( , )t j kξ probability of selecting thk mixture 
component in state j  at time .t  The estimated HMM parameters can be represented as 
follows. 
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where ,i ja  represents the estimated transition probability from the state i  to the state j  
and ,j kc  the estimated thk  mixture weights in state j , ,j kμ  the estimated mean of thk  
mixture in state j , and ,j kΣ  the estimated covariance of thk  mixture in state j .  

3. Continuous HMM-based HAR system 
In our HAR system, we apply the continuous HMM to model and recognize various human 
activities from time-sequential depth silhouette features. Our HAR system consists of depth 
silhouette extraction, feature extraction, modeling, and recognition via the continuous 
HMM. Fig. 3 shows the key processes of our depth silhouette feature-based activity 
recognition system.  

3.1 Depth silhouette extraction 
A Gaussian probability distribution function is used to remove background from the RGB 
frames and to extract the binary Region of Interest (ROI) based on which depth ROIs are 
extracted from the corresponding depth images acquired by a depth camera. ZCAMTM, a 
commercial camera developed by the 3DV system, is used to acquire the RGB and depth 
images of different activities (Iddan & Yahav, 2001). The image sensor in the ZCAM 
produces the RGB and distance information for the object captured by the camera.  
To capture the depth information, the image sensor first senses the surface boundaries of the 
object and arranges each object according to the distance information. The depth value 
indicates the range of each pixel in the scene to the camera as a grayscale value such that the 
shorter ranged pixels have brighter and longer ones contains darker values. The system 
provides both RGB and depth images simultaneously. Figs. 4(a) to (e) show a background 
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Feature Extraction

Activity Training and Recognition
 

Fig. 3. Depth Silhouette-based human activity recognition system using continuous HMMs. 

image, a RGB frame from a both hands up-down sequence, its corresponding binary, depth, 
and pseudo color image respectively. In the depth image, the higher pixel intensity indicates 
the near and the lower the far distance. For instance, in Fig. 4(d), the forearm regions are 
brighter than the body. Thus, different body components used in different activities can be 
represented effectively in the depth map or the depth information and hence can contribute 
effectively in the feature generation. On the contrary, the binary silhouettes contain a flat 
pixel value in the human body and hence cannot distinguish the body postures effectively. 
Consequently, by means of the infrared sensor-based camera, we obtained both the RGB 
and depth images of distinguished activities at 30fps to apply on our HAR system. 
Since the raw depth images acquired by the camera consist of random noises, median 
filtering was applied on the depth images to make them smooth. Then, the depth silhouette 
was extracted from every depth image and resized to the size of 50x50. Fig. 5 shows 
sequences of depth silhouettes from right hand up-down, left hand up-down, both hands 
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(a) 
 

(b) 

(c) 
 

(d) 

 
(e) 

Fig. 4. Sample video images of (a) a background image, (b) a RGB frame from a both hands 
up-down sequence, (c) its corresponding binary, (d) depth, and (e) pseudo color image. 

up-down, clapping, and boxing activities. To apply the feature extraction, each silhouette 
was converted to a vector with the size of the total pixels (i.e., 2500) in it. The first step 
before feature extraction is to make all the silhouette vectors zero mean. 

3.2 Principal component analysis on depth silhouettes 
After preprocessing of the silhouette vectors, we proceed to the dimension reduction 
process as the training database contains the silhouette vectors with a high dimension (i.e., 
2500). In this regard, we applied PCA, one of the most popular methods to approximate 
original data in the lower dimensional feature space (Niu & Abdel-mottaleb, 2004; Niu & 
Abdel-mottaleb, 2005; Uddin et al., 2008a; Uddin et al., 2008b; Uddin et al., 2009). The main 
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Fig. 5. Ten depth silhouettes from image sequences of (a) right hand up-down, (b) left hand 
up-down, (c) both hands up-down, (d) clapping, and (e) boxing activity. 
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Fig. 6. Forty eight PCs of all the depth silhouettes of the five activities. 

approach is to compute the eigenvectors of the covariance data matrix Q  and then 
approximate using the linear combination of top eigenvectors. The covariance matrix of the 
sample training depth silhouette vectors and the PCs of the covariance matrix can be 
calculated as  

 
1

1 ( ),
T

T
i i

i
Q X X

T =
= ∑  (17) 
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 TE QEΛ =  (18) 

where E represents the matrix of eigenvectors and Λ  diagonal matrix of the eigenvalues. 
The eigenvector corresponding to the largest eigenvalue indicates the axis of largest 
variance and the next largest one is the orthogonal axis of the largest one indicating the 
second largest variance and so on.  
Basically, the eigenvalues close to zero carry negligible variance and hence can be neglected. 
So, the several m eigenvectors corresponding to the largest eigenvalues can be used to 
define the subspace. Thus, the full dimensional depth silhouette vectors can be easily 
represented in the reduced dimension. After applying PCA on the depth silhouettes of 
various activities, it generates global features representing most frequently moving parts of 
human body in all activities. However, PCA being a second order statistics-based analysis 
can only extract global information (Niu & Abdel-mottaleb, 2004; Niu & Abdel-mottaleb, 
2005; Uddin et al., 2008a; Uddin et al., 2008b; Uddin et al., 2009). Fig.6 shows 48 basis images 
after PCA is applied on 2250 images of the five activities. The basis images are the resized 
eigenvectors (i.e., 50x50) normalized in a grayscale. Fig. 7 shows the top 150 eigenvalues 
corresponding to the first 150 eigenvectors.  
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Fig. 7. Top 150 eigenvalues of the training depth silhouettes of the five activities. 

If there are  k  number of depth silhouette vectors in the database where each vector is t  
dimensional and top m  eigenvectors are chosen after applying PCA, the size of the PCA 
representations of all silhouette vectors becomes kxm where each silhouette vector 
represents the size of 1 .xm  For our experiments, we considered 150 PCs after applying PCA 
over the training database of 2250 silhouettes of the five activities and as a result, m  
becomes 150 and the size of the mE  is 2500x150 where each column vector represents a PC. 
Thus, projecting each silhouette image vector with the size of 1x2500 onto the PCA feature 
space, it can be reduced to 1x150. 

3.3 Independent component analysis on depth silhouettes 
Independent Component Analysis (ICA) is a higher order statistical approach than PCA for 
separating a mixture of signals into its components. The most well-known applications of 
ICA are in the field of signal and image processing such as biomedical signals (Jung et. Al, 
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2001), speech (Lawrence & Rabiner, 1989; Kwon & Lee, 2004), face (Yang et al., 2005), etc. 
ICA has been recently applied in the field of facial expression analysis areas to focus on the 
local face features (Kwak & Pedrycz, 2007; Uddin et al., 2009).  
Basically, ICA finds the statistically independent basis images. The basic idea of ICA is to 
represent a set of random observed variables using basis functions where the components 
are statistically independent. If S  is a collection of basis images and X  a collection of input 
images then the relation between X and S  is modeled as 
 

      

      

      

      

      

      

      

      
 
Fig. 8. Forty eight ICs of all the depth silhouettes of the five activities. 



 Hidden Markov Models, Theory and Applications 

 

238 

 X AS=  (19) 

where A represents an unknown linear mixing matrix of full rank.  
An ICA algorithm learns the weight matrix W, which is inverse of mixing matrix A. W is 
used to recover a set of independent basis images S . The ICA basis images reflect local 
feature information rather than global information as in PCA. ICA basis images show the 
local features of the body parts in activity. Fig. 8 shows 48 ICA basis images for all activities. 
Before applying ICA, PCA is used to reduce the dimension of the image data. ICA is 
performed on mE  as follows. 

 ,T
mS WE=  (20) 

 1 ,T
mE W S−=  (21) 

 1
rX V W S−=  (22) 

where V  is the projection of the images X  on mE  and rX  the reconstructed original images. 
The IC representation iI  of thi  silhouette vector iX  from an activity image sequence can be 
expressed as 

 1 .−=i miI E WX  (23) 

Since ICA is applied on the PC features in our HAR work, the size of the ICA 
representations of the depth silhouette vectors are same as PCA. As the top 150 PCs are 
chosen to apply ICA, therefore, the size of the IC features of each depth silhouette vector 
and the weighting matrix  W are 1x150 and 150x150 respectively. 
However, as PCA considers the second order moments only, it lacks information on higher 
order statistics. On the contrary, ICA considers higher order statistics and it identifies the 
independent source components from their linear mixtures. Hence, ICA provides a more 
powerful data representation than PCA as it tries to provide an independent rather than 
uncorrelated feature representation. Thus, we applied ICA in our depth silhouette-based 
HAR system to find out statistically independent local features for improved HAR. 

3.4 LDA on the independent depth silhouette component features 
Linear Discriminant Analysis (LDA) is an efficient classification tool that works based on 
grouping of similar classes of data. It finds the directions along which the classes are best 
separated by considering the within-class scatter but also the between-class scatter (Kwak & 
Pedrycz, 2007; Uddin et al., 2009). It has been used extensively in various applications such 
as facial expression recognition (Kwak & Pedrycz, 2007; Uddin et al., 2009) and human 
activity recognition (Uddin et al., 2008). Basically, LDA projects data onto a lower-
dimensional vector space such that the ratios of the between-class scatter and the within-
class scatter is maximized, thus achieving maximum discrimination. 
LDA generates an optimal linear discriminant function which maps the input into the 
classification space based on which the class identification of the samples can be decided 
(Kwak & Pedrycz, 2007). The within-class scatter matrix, WS  and the between-class scatter 
matrix, BS  are computed by the following equations: 
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where iJ  is the number of vectors in thi class iC . c  is the number of classes and in our case, it 
represents the number of activities. m  represents the mean of all vectors, im  the mean of 
the class iC  and km  the vector of a specific class. The optimal discrimination matrix optD  is 
chosen from the maximization of ratio of the determinant of the between and within-class 
scatter matrix as  

 arg max
T

B
opt TD

W

D S D
D

D S D
=  (26) 

where optD  is the set of discriminant vectors corresponding to the ( 1)c−  largest generalized 
eigenvalues λ  problem as  

 .B i i W iS d S dλ=  (27) 

The LDA algorithm seeks the vectors in the underlying space to create the best 
discrimination among different classes. Thus, the extracted local feature-based ICA 
representations of the binary silhouettes of different activities can be extended by LDA. 
LDA on the IC features for the depth silhouette vectors can be represented as 

 .T
i i optF I D=  (28) 

Fig. 9 depicts the 3-D representation of the depth silhouette features after applying on three 
ICs that are chosen on the basis of top kurtosis values. Fig. 10 shows a 3-D plot of LDA on  
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Fig. 9. A plot of the three IC features of 2250 depth silhouettes of all activities. 
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Fig. 10. A plot of the three LDA features of 2250 depth silhouettes of the activities. 

the IC features of the silhouettes of the five activities where 150 ICs are taken into 
consideration. Fig. 10 demonstrates a good separation among the representations of the 
depth silhouettes of the five activities. Once the LDA algorithm is applied on a database of 
the depth silhouette vectors where each vector is 150 dimensional, the size of the LDA 
subspace becomes 4x150 as ( - 1) 4c    = . Hence, the LDA projection of the IC feature vector of 
each depth silhouette becomes 1x4.  

3.5 Continuous HMM for depth silhouette-based activity training and recognition 
Once human activities are represented in the time-sequential depth silhouette features, the 
continuous HMM can be applied effectively for HAR. In our system, we considered a four-
state left-to-right HMM to model the human activities. The initial probability of the states π  
was initialized as {1,0,0,0}. The transition matrix A  was uniformly initialized according to 
the transition between the states. Two mixtures per depth silhouette features were 
considered to model the activities by the continuous HMMs. Finally, the continuous HMMs 
were trained using the Baum-Welch parameter estimation algorithm. Each activity was 
represented by a distinct continuous HMM. Figs. 11 and 12 show the transition probabilities 
of a left hand up-down HMM before and after training respectively. 
To recognize an activity, a feature vector sequence obtained from the activity image 
sequence was applied on all trained continuous HMMs to calculate the likelihood and the  
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Fig. 11. A left hand up-down HMM before training. 



Continuous Hidden Markov Models for Depth Map-Based Human Activity Recognition   

 

241 

Ξ1 Ξ2 Ξ3 Ξ4

0.542 0.253

0.021

0.437

0.321

0.426

0.658 1

0.342

 
Fig. 12. A left hand up-down HMM after training. 

one was chosen with the highest probability. Thus, to test a feature vector sequence O  (i.e., 
1 2, ,..., TO O O ), we found the appropriate HMM as  

 
1, 2 , ...,

{ },
i

i N

decision argmax L
=

=  (29) 

 Pr( | )
i i

L O H=  (30) 

where L  represents the likelihood of O  on corresponding trained activity HMM H.  

4. Experimental setups and results 
For the experiments, the binary (Uddin et al., 2008a) and depth silhouettes (Uddin et al., 
2008b) were used as input to our HAR system. Five activities were recognized using 
different types of features with the continuous HMMs: namely right hand up-down, left 
hand up-down, both hands up-down, clapping, and boxing. Each activity sequence 
consisted of a time-series set of 30 silhouettes. A total of 15 sequences from each activity 
were used to build the feature space in training. Thus, the whole database consisted of a 
total of 2250 images. A total of 200 sequences (i.e., 40 sequences for each activity) were used 
in testing. 
We started our experiments with the traditional binary silhouette-based HAR. After the 
background subtraction, the ROIs containing the binary silhouettes were extracted from the 
sequences. Since the binary silhouettes from the activities used in the experiments were 
similar to each other, the recognizer produced much low recognition rates for all the 
approaches (i.e., PCA, LDA on the PC features, ICA, and LDA on the IC features) as shown 
in Table 1. 
In the following experiments, the binary silhouettes were replaced with the depth ones. The 
combination of PCA on the depth silhouettes with the continuous HMM were experimented 
first. PCA found the global depth silhouette features to be applied on the continuous 
HMMs, obtaining the mean recognition rate of 85.50%. By extending the PCA features by 
LDA, we obtained the mean recognition rate of 86.50%, improving the recognition 
marginally. We continued to apply ICA on the depth silhouettes to obtain improved local 
depth silhouette features, achieving the mean recognition rate of 93.50%. Finally, LDA on 
the IC features with the continuous HMMs produced the highest recognition rate of 99%. 
The recognition results using the various types of features from the depth silhouettes are 
shown in Table 2. 
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Approach Activity Recognition 
Rate Mean Standard 

Deviation 

Right hand up-down 32.50% 

Left hand up-down 35 

Both hands up-down 30 

Clapping 40 

PCA 

Boxing 45 

 
 

36.50 

 
 

6.02 

Right hand up-down 35 

Left hand up-down 32.50 

Both hands up-down 37.50 

Clapping 32.50 

 
LDA on the PC features 

Boxing 42.50 

 
 

36 

 
 

4.18 

Right hand up-down 42.50 

Left hand up-down 37.50 

Both hands up-down 50 

Clapping 40 

 
 

ICA 

Boxing 45 

 
 

43 

 
 

4.80 

Right hand up-down 45 

Left hand up-down 42.50 

Both hands up-down 52.50 

Clapping 42.50 

 
LDA on the IC features 

Boxing 45 

 
 

45.50 

 
 

4.11 

 
 

Table 1. Recognition results using the binary silhouette-based approaches. 
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Approach Activity Recognition 
Rate Mean Standard 

Deviation 

Right hand up-down 90% 

Left hand up-down 90 

Both hands up-down 80 

Clapping 85 

PCA 

Boxing 82.50 

 
 

85.50 

 
 

4.47 

Right hand up-down 90 

Left hand up-down 92.50 

Both hands up-down 82.50 

Clapping 85 

 
LDA on the PC features 

Boxing 82.50 

 
 

86.50 

 
 

4.54 

Right hand up-down 92.50 

Left hand up-down 95 

Both hands up-down 92.50 

Clapping 95 

 
 

ICA 

Boxing 92.50 

 
 

93.50 

 
 

1.37 

Right hand up-down 100 

Left hand up-down 100 

Both hands up-down 100 

Clapping 97.50 

 
LDA on the IC features 

Boxing 97.50 

 
 

99 

 
 

1.36 

 
 

Table 2. Recognition results using the depth silhouette-based approaches. 
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Fig. 13. Basic steps of our depth silhouette-based real-time HAR system. 
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July 01, 2010 16:07:52
Activity: Right hand up-down.

July 01, 2010 16:07:59
Activity: Right hand up-down.

July 01, 2010 16:08:10
Activity: Right hand up-down.

July 01, 2010 16:08:19
Activity: Right hand up-down.

July 01, 2010 16:08:26
Activity: Right hand up-down.

July 01, 2010 16:11:34
Activity: Left hand up-down.

July 01, 2010 16:11:39
Activity: Left hand up-down.

July 01, 2010 16:11:48
Activity: Left hand up-down.

July 01, 2010 16:11:53
Activity: Left hand up-down.

July 01, 2010 16:14:29
Activity: Both hands up-down.

July 01, 2010 16:14:38
Activity: Both hands up-down.

July 01, 2010 16:14:44
Activity: Both hands up-down.

July 01, 2010 16:14:51
Activity: Both hands up-down.

July 01, 2010 16:15:00
Activity: Both hands up-down.

July 01, 2010 16:17:34
Activity: Clapping.

July 01, 2010 16:17:42
Activity: Clapping.

July 01, 2010 16:17:47
Activity: Clapping.

July 01, 2010 16:17:54
Activity: Clapping.

July 01, 2010 16:18:05
Activity: Clapping.

July 01, 2010 16:22:00
Activity: Boxing.

July 01, 2010 16:22:07
Activity: Boxing.

July 01, 2010 16:22:15
Activity: Boxing.

July 01, 2010 16:22:33
Activity: Boxing.

July 01, 2010 16:22:21
Activity: Boxing.  

 

Fig. 14. Real-time human activity recognition results. 
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4.1 Real-time depth silhouette-based human activity recognition  
After testing our system offline, we continued our study to recognize the five activities in 
real-time. We implemented a HAR system in a programming language, Matlab 7.4.0 to 
acquire the RGB as well as depth images of various activities in real-time and applied LDA 
on the IC features on the depth silhouettes with the continuous HMMs. We used a non 
overlapping window of 30 sequential depth frames from the real time video data and 
extracted the IC-based features to apply on the trained HMMs for recognition. Fig. 13 shows 
the architecture of our real-time HAR system. Fig. 14 shows some of our sample real-time 
recognition results with date and time where the result is shown at the bellow of the RGB 
images automatically. Here, the labeled RGB image is shown for the clarity of the activity 
though we used the depth silhouettes for activity recognition. 

5. Conclusion 
In this chapter, we have presented the basics of the continuous HMM and its application to 
human activity recognition. Our depth silhouette-based HAR methodology successfully 
incorporates the continuous HMM to recognize various human activities: we have shown 
that the depth silhouettes outperform the traditional binary silhouettes significantly, 
although the same HMM has been incorporated for recognition. We have also demonstrated 
real-time working of our presented HAR system. As presented, the HMMs can be effective 
in the field of HAR where pattern recognition of spatiotemporally changing information is 
critical. 
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1. Introduction 
Hidden Markov models (HMMs) are well developed statistical models to capture hidden 
information from observable sequential symbols. They were first used in speech recognition 
in 1970s and have been successfully applied to the analysis of biological sequences since late 
1980s as in finding protein secondary structure, CpG islands and families of related DNA or 
protein sequences [1]. In a HMM, the system being modeled is assumed to be a Markov 
process with unknown parameters, and the challenge is to determine the hidden parameters 
from the observable parameters. In this chapter, we described two applications using 
HMMs to predict gene functions in yeast and DNA copy number alternations in human 
tumor cells, based on gene expression microarray data.  
The first application employed HMMs as a gene function prediction tool to infer budding 
yeast Saccharomyces cerevisiae gene function from time-series microarray gene expression 
data. The sequential observations in HMM were the discretized expression measurements at 
each time point for the genes from the time-series microarray experiments. Yeast is an 
excellent model organism which has reasonably simple genome structure, well 
characterized gene functions, and huge expression data sets. A wide variety of data mining 
methods have been applied for inferring yeast gene functions from gene expression data 
sets, such as Decision Tree, Artificial Neural Networks, Support Vector Machines (SVMs) 
and K-Nearest Neighbors (KNNs) [2-4]. However those methods achieved only about 40% 
prediction precision in function prediction of un-annotated genes [2-4]. Based on our 
observations, there are three main reasons for the low prediction performance. First, the 
computational models are too simple to address the systematic variations of biological 
systems. One assumption is that genes from the same function class will show a similar 
expression pattern. However, clustering results have shown that functions and clusters have 
many-to-many relationship and it is often difficult to assign a function to an expression 
pattern (Eisen et al., supplementary data) [5]. Second, the measurements of expression value 
are generally not very accurate and show experimental errors (or noise). The observed 
expression values may not reflect the real expression levels of genes. For example, a 
correlation as low as 60% was reported between measurements of the same sample 
hybridized to two slides [6]. Third, none of the above methods explicitly address the less 
obvious but significant correlation of gene expressions. Our results indicate that the 
expression value of a gene depends significantly on its previous expression value. 
Therefore, Markov property can be assumed to simplify the non-independence of gene 
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expressions. In this application, we developed a gene function classification tool based on 
HMMs from time-series gene expression profiles (GEP) in yeast and the goal was to provide 
a better tool for more accurate gene function prediction as compared to other existing tools. 
We studied 40 yeast gene function classes which have a sufficient number of open reading 
frames (ORFs) in Munich Information Centre for Protein Sequences (MIPS), for example 
greater than 100, for the training purpose of HMMs. Each function class was modeled as a 
distinct HMM and the set of 40 HMMs compose a discriminant model for unknown gene 
function prediction. Cross-validation showed our HMM-based method outperforms other 
existing methods by an overall prediction precision of 67%.  
In the second application, we developed a DNA copy number alteration (CNA) prediction 
tool based on HMMs to infer genetic abnormalities in human tumor cells from microarray 
gene expression data. The sequential observations in this HMM application were the 
discretized expression measurements for the genes along the chromosomal locations for 
each chromosome. Instead of the temporal order of gene expression in the time-series 
experiments in the first application, in the second application we used the spatial order of 
the genes according to chromosomal locations as the sequential data in HMM. It is well 
known that chromosomal gains and losses play an important role in regulating gene 
expression and constitute a key mechanism in cancer development and progression [7, 8]. 
Comparative Genomic Hybridization (CGH) was developed as a molecular cytogenetic 
method for detecting and mapping such CNAs in tumor cells [9, 10]. However, in the post-
genomic era, the majority of the genome-wide studies in cancer research have been focusing 
on gene expression but not CGH, and as a result, an enormous amount of GEP data have 
been accumulated in public databases for various tumor types [11-15], but few CGH studies 
have been performed in large series of tumor samples [16]. The vast amount of GEP data 
represents an important resource for cancer research, yet it has not been fully exploited. We 
hypothesized that with a well-designed computational model, GEP data can be readily used 
to derive functionally relevant genetic abnormalities in tumors. From the literature review, 
most studies including GEP and CGH have been focusing on the impact of one on the other 
or combining the two for identifying candidate tumor suppressor genes or oncogenes [8, 17-
25]. In this application, we proposed a novel computational approach based on HMMs to 
predict CNAs from the GEP data. It would significantly reduce the cost of CNAs detection 
in tumor cells, and more importantly, it will reveal functionally more relevant CNAs as 
compared to those identified by CGH, since CGH in principle defines only the structural 
changes which may or may not reflect functional effects, but GEP-defined CNAs must have 
the functional effects reflected by changes of gene expression. HMMs have recently been 
applied in array CGH for segmentation, a procedure to divide the signal ratios of each clone 
on the array into states, where all of the clones in a state have the same underlying copy 
number [26, 27]. In this application, HMM was used for an integrative analysis of GEP-to-
CGH prediction which intended to capture two primary sources of uncertainty embedded 
in genomic data: First, the significant but subtle correlations between GEP and CGH; 
Second, the sequential transitions of DNA copy number changes along a chromosome. The 
purpose was to enhance the limited CGH data with the wealth of GEP data and provide an 
integrative genomic-transcriptomic approach for identifying functionally relevant genetic 
abnormalities in cancer research. In this application, we studied 64 cases of Mantle Cell 
Lymphoma (MCL) which had both GEP and CGH data associated. Since chromosomal gains 
and losses occur on individual chromosomes, we developed and trained a separate HMM 
for each chromosome and the set of 24 HMMs compose a discriminant model for the human 
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tumor CNA prediction. Using cross validation, the training of the HMMs was done on the 
paired GEP and CGH data, and the prediction was made for a new tumor sample for its 
CNAs based on the trained HMMs from its GEP data. Our HMM method achieved 75% 
sensitivity, 90% specificity and 90% accuracy in predicting CNAs in 64 MCL samples when 
compared to the CNAs identified by experimental CGH on the same tumor samples.  

2. Preliminary of HMM 
Transition and emission probabilities 

A HMM describes a doubly embedded stochastic process with one observable process 
{Oi} and one hidden process {Hi}. The hidden process {Hi} is an ordinary Markov model 
with state transition distribution defined as aij:  

 0 1 1 1( | , , , ) ( | )ij n n n na P H j H H H i P H j H i− −= = = = = =…  (1) 

where ; aij is the transition probability from hidden state i to j. 
The observable process {Oi} is embedded upon the hidden process with a distinct 
probability distribution eik defined at each hidden state: 

 1 2( | , , , ) ( | )ik n n n ne P O k H H H i P O k H i= = = = = =…  (2) 

where eik is the emission probability of emitting symbol k at hidden state i. 
Together with the initial hidden state distribution π, the HMM with discrete emission 
symbols can be readily represented as a 5-tuple (K, N, aij, eik, π), where K is the number of 
states of the hidden process and N is the number of observations at each hidden state. Given 
the observation sequence O1 O2 …OT, and a HMM, M = (K, N, aij, eik, π), we can efficiently 
compute P(O1 O2 …OT | M), the probability of observing the sequence, by using the Viterbi 
or forward algorithms. In a HMM, the challenge is often to determine the hidden 
parameters from the observable parameters. To estimate the model parameters, when the 
state paths are known for the training datasets, Maximum Likelihood Estimation (MLE) or 
Bayesian Maximum A Posteriori (MAP) can be used; if the state paths are unknown, the 
Baum-Welch algorithm or Viterbi training can be used instead to learn the model 
parameters using a set of observation sequences. To estimate the hidden state path for a new 
case, two standard algorithms Viterbi and Forward-Backward can be used. Refer to Koski 
(2002), Durbin (1989) and Rabiner (1989) for details [1, 28, 29]. 

Viterbi, Forward and Backward Algorithms 

Viterbi decoding is a dynamic programming algorithm. Suppose the probability vk(i-1) of 
the most probable path ending in state k with observation xi-1 is known for all the states k, 
then the probability vl(i) corresponding to the observation xi with the state l can be 
calculated as in Eq. (3). The entire path π can be found recursively as in Algorithm (1). 

 ( ) ( )max( ( 1) )l l i k klk
v i e x v i a= −  (3)   

where akl is the transition probability, el(xl) is the emission probability,  k and l are states and 
xi is an emission symbol. 
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Algorithm (1) Viterbi: 

Initialization (i=0): 0(0) 1, (0) 0 for 0.kv v k= = >  
Recursion (i=1…L): ( ) ( )max( ( 1) ); ( ) arg max( ( 1) ).l l i k kl k klk k

v i e x v i a ptr l v i a= − = −  

Termination: * *
0 0( , ) max( ( ) ); arg max( ( ) ).k k L k kk k

P x v L a v L aπ π= =  

Traceback (i=1…L): * *
1 ( ).i i iptrπ π− =  

 
Posterior decoding is derived from Forward and Backward algorithms, which are similar 
dynamic programming procedures to Viterbi, but by replacing the maximization steps with 
sums to obtain the full probability for all possible paths. In Forward algorithm, 

1( ) ( , )k i if i P x x kπ= =…  is the forward variable, representing the full probability for all the 
probable paths ending in state k with observation up to and including xi. Then ( 1)lf i + , 
which corresponds to the observation up to and including xi+1 and ending in state l, can be 
calculated by the recursion in Eq. (4). In Backward algorithm, the backward variable 

1( ) ( | )k i L ib i P x x kπ+= =…  is analogous to fk(i), but instead obtained by a backward recursion 
starting at the end of the sequence as in Eq. (5). The detailed Forward and Backward 
algorithms are shown in Algorithms (2) and (3). 

 1( 1) ( ) ( )l l i k kl
k

f i e x f i a++ = ∑  (4) 

 

 1( ) ( ) ( 1)k l i kl l
l

b i e x a b i+= +∑  (5) 

 

where akl is the transition probability, el(xl) is the emission probability,  k and l 
{ , , , , , , , , } o o oH H H L L L M M M+ − + − + −∈ and xi { , , }H L M∈ . 

 

Algorithm (2) Forward: 

Initialization (i=0): 0(0) 1, (0) 0 for 0.kf f k= = >  
Recursion (i=1…L): ( ) ( ) ( 1) .l l i k kl

k
f i e x f i a= −∑  

Termination: 0( ) ( ) .k k
k

P x f L a=∑  

 
Algorithm (3) Backward: 

Initialization (i=L): 0( )  for 0.k kb L a k= >  
Recursion (i=L-1…1): : 1( ) ( ) ( 1).k l i kl l

l
b i e x a b i+= +∑  

Termination: 1 0( ) ( ) (1).l l l
l

P x e x a b=∑  
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Having fk(i) and bk(i), given the emitted sequence x, the posterior probability that 
observation xi comes from a state k is shown in Eq. (6). The posterior probability that 
observation xi comes from all possible states in the specific set is shown in Eq. (7), where g(k) 
is a function defined on the states. Then we concatenate the most probable state at each 
position to form an entire state path. 

 ( | ) ( ) ( ) / ( )i k kP k x f i b i P xπ = =  (6)      

 ( | ) ( | ) ( )i
k

G i x P k x g kπ= =∑  (7) 

3. Method 
Application 1—Yeast Gene Function Prediction 
For a set of time-series expression data, we model the discretized expression measurements 
at each time point as observed emission symbols. Our goal is to train separate HMMs for 
each gene function class and use the set of HMMs as a whole discriminant model for 
unknown gene function prediction.  
Data  

The expression data set is obtained from http://rana.lbl.gov/EisenData.htm (Eisen, et al., 
1998) [5]. The complete data set contains 2,467 genes with each gene having 79 experimental 
measurements recorded. Among the 2,467 genes, 2,432 have at least one function annotation 
at MIPS (http://mips.gsf.de/) [30]. For training purpose, we only include 40 function 
classes which have at least 100 open reading frames (ORFs) in MIPS.  
The original data set is organized as a set of pairs {( , )|1 }iS C i n= ≤ ≤iX  where Xi= [Xi1, 
Xi2,…, XiT] is the expression vector and Ci is the class label for the ith training sample, T is 
the number of genes and n is the number of training samples. Expression vectors with the 
same class label are then grouped into the subset {( , )| ,   1 ,  1 }j i iS C C j j L i n= = ≤ ≤ ≤ ≤iX , 
where L is the number of classes.  The entire prediction process can be performed in three 
steps: discretization, training and inference. Discretization is a data preprocessing step in which 
the continuous expression measurements are divided up into a fixed set of intervals 
(symbols). In the training step, the parameters of each distinct unit of HMM, Mi, are 
specified by using each training subset Si. The whole model { |1 }iM M i L= ≤ ≤  is a 
collection of unit models and used for inference of gene functions. 
Model Structures 
One advantage of HMMs is that designers can choose arbitrary transition and emission 
structures appropriate for modeling data from specific domains. In this application, two 
model structures were considered for modeling the sequential time-series microarray gene 
expression data (Figure 1). Model A defines states based on time sequence of experiments. 
This model is the backbone of the HMM for protein profiling [1, 31]. The advantage of 
model A is that the position-specific information is preserved. However, if we take a closer 
look, all transitions are of probability 1 and the HMM is actually degenerated into a weight 
matrix which doesn’t consider the non-independence of data. To reflect the dependence of 
the expression data at different time points, we designed model B by combining the 
expression values and the experiment sequence as states. The state is defined as a pair, 



 Hidden Markov Models, Theory and Applications 

 

254 

(value, experiment). If an expression value is below a predefined threshold at time point i, the 
state is “low-i”; otherwise it is “high-i”. Model B is a more complex model which is able to 
capture the Markov property of expression data. However, model B has more parameters 
than model A and hence requires a larger number of training samples. The model A is 
referred to “chain HMM” and model B as the “split HMM”. 
                            

B: Begin State; E: End State; Hi: High State; Lo: Low State 
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Fig. 1. Two HMM model structures for modeling yeast time-series microarray gene 
expression data. Left panels are state transition diagrams and right panels are expression 
patterns. A. States defined based on experiment order (i.e. time points). B. States definition 
according to both expression value and experiment order. Note that “B” and “E” are special 
dummy states without emission. 
Training  

In this section, we describe the training of prior distribution P(Mi), transition distribution 
(aij) and emission distribution (eik) for each gene function class. All the distributions are 
considered as a multinomial distribution with certain unknown parameters. We will use 
Bayes’ learning to determine the point estimator of all unknown parameters from the data. 
The prior probability density function P(Mi) is estimated by the Maximum Likelihood 
Estimator (MLE) of a multinomial distribution as in Eq. (8): 

 

1

| |ˆ( )
| |

i
i L

i
i

SP M
S ′

′=

=

∑
 (8) 

where  | |iS  is the number of training samples in the ith class and L is the number of classes. 
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The transition probability distribution can be modeled as a multinomial distribution 
1 2( , ,..., )i i iKiMul a a a . We use a Dirichlet distribution Dir(1, 1, …, 1) as the conjugate prior to 

avoid the problem of zero probability. Therefore, the Mean Posterior Estimator for the 
transition probability aij is defined as in Eq. (9): 

 

'
' 1

1
ˆ  , 1 ,  1

i

ij
ij iK

ij i
j

A
a i K j K

A K
=

+
= ≤ ≤ ≤ ≤

+∑
 (9) 

where Aij is the count of transitions from state i to j in the training samples, K is the number 
of states defined in the HMM, and Ki is the out-degree of state i (i.e., Ki=1 in the chain HMM, 
, and Ki =2 in the split HMM). Similar to the transition probabilities, emission probabilities 
can be estimated by counting the frequencies as well in Eq. (10), 

 

'
' 1

1
ˆ , 1 ,  1ij
ij N

ij
j

E
e i K j N

E N
=

+
= ≤ ≤ ≤ ≤

+∑
 (10) 

where Eij is the count of emissions of symbol j at state i in the training samples, K is the 
number of states defined in the HMM, and N is the total number of symbols at each state.  
The training was performed for each function class. 
Inference 

Given an expression vector X and the model M (a collection of each unit model Mi), inferring 
the function of X is performed based on Bayes’ theorem: 

 ( | ) ( | ) ( )i i iP M P M P M∝X X  (11) 

In order to calculate the posterior probability P(Mi|X), we need the prior probability of each 
P(Mi) and the likelihood P(X|Mi). P(Mi) is specified in Eq. (8). The likelihood P(X|Mi) can be 
considered as the marginal probability of X across all hidden state paths π.  

  0 1 ( ) ( 1) ( ) ( )
1

( | ) ( , | )
T

i i l l l X l
l

P M P M a a eπ π π π
π π

π +
=

= =∑ ∑ ∏X X  (12) 

where π(l) is the lth hidden state in the path π and X(l) is the symbol at the lth state. Once the 
parameters of the HMM Mi have been determined from training data, the likelihood term 
can be efficiently computed by the forward algorithm, as described previous section 
Preliminary of HMM. The inference of function class is then made by choosing the most 
likely class given the data, as in Eq. (13).  

  * arg max ( | ) arg max ( | ) ( )
i i

i i i
M M

M P M P M P M= =X X  (13) 

Application 2—Human Tumor CNA Prediction 
In the second application, HMMs are used to address the following question: “Given a 
sequence of gene expression data along chromosomal locations as observations, predict the 
hidden CGH status of the chromosomal gains or losses.” 
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Model Structure  

In the HMM-CNA prediction, the observable process {Oi} describes discretized gene 
expression values of genes along a chromosome, where Oi =“H”, “L” or “M” for high, low or 
medium expression, respectively; the hidden process {Hi} describes the underlying CNAs, 
where Hi =“+”, “-” or “o” for gain, loss or normal copy number status of a gene, respectively. 
In Figure 2A, the HMM model was illustrated as a Bayesian network, where the shaded 
nodes S1, S2, …, Sn represent hidden state variables, and the visible nodes E1, E2, …, En 
represent the observations for the variables, for the genes along a chromosome. The 
emission space consists of three symbols {H, L, M} and the hidden state space consists of 
nine states that the gene expression values superimposed on the CNAs {H+, L+, M+, H-, L-, M- 
, Ho, Lo, Mo} , where Eα emits E, { , , }E H L M∈  and { , , }oα ∈ + − . Figure 2B showed the state 
transition diagram. The model is a single chain incorporating three Markov sub-chains. In 
each sub-chain, there is a complete set of state transitions, describing the elongation of a 
DNA segments with a gain, loss or normal copy number. The state transitions between sub-
chains are also allowed to describe the state change of a gain, loss or normal CNA. This 
design of intra- and inter- sub-chain transitions in HMM makes it possible to identify 
alterative gain, loss and normal regions of variable length automatically.  
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Fig. 2. HMM model structure for human CNA prediction. (A) HMM model presented as a 
Bayesian network. The shaded nodes S1, S2, …, Sn represent hidden state variables and the 
white nodes E1, E2, …, En represent the observations for the variables. (B) State transition 
diagram of HMM-CNA model. The model is a single HMM chain integrating three Markov 
sub-chains: (+), (-) and (o). In each sub-chain, a Markov chain is graphically shown as a 
collection of states, with arrows between them describing the state transitions within a gain, 
loss or normal CNA. There are also arrows between sub-chains, describing the state 
transitions from a gain, loss or normal CNA to another. 
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Training 
Since chromosomal gains and losses are based on individual chromosomes, we developed 
and trained a separate HMM for each chromosome accordingly. The whole HMM-CNA 
prediction model was made of individual HMMs. In our training dataset, given the paired 
GEP and CGH data, the hidden state path for each observation sequence is known. 
Therefore, the transition and emission probabilities can be estimated using MLE as in Eq. (9) 
and (10). 
Inference 
Having the model parameters trained by training data, we used Viterbi or Posterior (also 
called Forward and Backward) decoding algorithms [1] to infer hidden CNA states for a 
new tumor sample based on its GEP observations. Viterbi algorithm works by finding the 
highest probability path as a whole as a hidden state path, while alternatively, Posterior 
algorithm finds the most likely state for each position and then concatenate those states as a 
hidden state path. The detailed algorithms of Viterbi and Posterior decoding were shown in 
Preliminary of HMM section. 
An alternative inference method for HMM when given only emissions (i.e. GEP 
observations) as training data is the Baum-Welch algorithm [1], which estimates the model 
parameters (transition and emission probabilities) together with unknown CGH states by an 
iterative procedure. We chose not to use this algorithm as there are many parameters in the 
model, but relatively few data points at each gene position to estimate these parameters. 
Instead, we use the true CGH states to guild the HMM prediction using the Viterbi or 
Posterior algorithms. 
Smoothing Algorithm 
Since gains and losses identified by our experimental CGH had the resolution on cytobands, 
we determined the gains and losses on cytoband resolution as well by applying the 
following smoothing method. Basically, a multinomial probability was used to measure the 
likelihood of a cytoband harboring a gain/loss or not. In Eq. (14), L is the likelihood under a 
hypothesis H, where H1 for the alternative hypothesis that “a cytoband is harbouring a gain 
or loss”, and H0 for the null hypothesis that “a cytoband is not harbouring a gain or loss”; 
n+, n-, and no are the numbers of genes in the gain, loss and normal status within this 
cytoband, and n is the total number of genes on this cytoband, n=n++n-+no; θ+, θ- and θo are 
the corresponding multinomial parameters which can be estimated using MLE  in Eq.(15). 
Under H1, θ1,+, θ1,- and θ1,o are estimated by the number of genes n+, n- and no on a cytoband 
(n=n++n-+no), while under H0, θ0,+, θ0,- and θ0,o are estimated by the number of genes N+, N- 
and No on the whole genome as background (N=N++N-+No). Log-of-odds (LOD), which is 
Log10 of the ratio of the two likelihoods, was used to measure how likely that the cytoband 
harbors a gain or loss in Eq. (16). The higher the LOD score, the more likely this cytoband 
harbors a genomic gain or loss. 

 !( , , | )
! ! !
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Other Simple Methods 
To compare with HMM, we also made two other simple methods, rGEP (raw GEP) and 
sGEP (smoothing GEP), to map the GEP status to CGH status without a sophisticated 
learning and inference process. By rGEP, we mean that a high expression status of a gene is 
mapped to a gain (i.e. “H” → “+”), low expression to a loss (i.e. “L” → “-”), and medium 
expression to a normal (i.e. “M” → “o”) status. In sGEP, a smoothing method (a multinomial 
model, as described above) was applied after rGEP to get a gain or loss status for a cytoband 
across a number of consecutive genes. 
Data 
The data we used in this application include 64 MCL samples performed with both GEP and 
CGH experiments [22]. The GEP data were obtained using Affymetrix HG-U133 plus2 
arrays and normalized (global median normalization) using BRB-Array Tool [32]. 1.5-fold 
change was adopted to determine high (>1.5 fold increase), low (>1.5 fold decrease) or 
medium (<1.5 fold change) expression of each gene in a tumor case as compared to the 
median expression of this gene across all tumor cases. The CGH experiments were 
performed by Vysis CGH kits (Downers Grove, IL). aCGH-Smooth [33] was used to 
determine breakpoints and relative levels of DNA copy number. The company 
recommended 1.25 and o.75 signal ratio of tumor to normal cells was used to segregate gain 
(>1.25), loss (<0.75) and normal (between 0.75 and 1.25) regions. Small-sized chromosomes 
and sex chromosomes were excluded from the study due to technical limitation and lack of 
gender data, including chromosomes 19-22, X and Y. The chromosomal locations of genes 
and cytobands were obtained by Affymetrix probesets alignments and NCBI Human 
Genome database Build 36.1. The LOD score of 2 was used as the cutoff to call a gain or loss 
for a cytoband after the smoothing algorithm. 

4. Results 
Evaluation criteria 
The prediction performs were evaluated using cross validation, in which the set of samples 
was divided up into the training set and the test set. The total n samples were randomly 
split into k subsets of equal size. We use each subset as the test set and the other k-1 subsets 
as the training set (which is called k-fold cross validation). In the extreme case where one 
case was used in the test set and all the other n-1 cases were used in training, it is called 
leave-one-out cross validation (LOOCV). K-fold cross validation or LOOCV were used to 
validate the HMMs in the two studies. 
The performance of predictions was evaluated using the criteria of precision, recall, sensitivity, 
specificity and accuracy, defined as below:  

 | |
| | | |

TPprecision
TP FP

≡
+

 (17) 

 | |
| | | |

TPrecall sensitivity
TP FN

≡ ≡
+

 (18) 
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 | |
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TNspecificity
TN FP

≡
+

 (19) 

 | | | |
| | | | | | | |

TP TNaccuracy
TP TN FP FN

+
≡

+ + +
 (20) 

where |TP| means the number of true positive, |FP| for false positive, |TN| for true 
negative, and |FN| for false negative. 
Application 1—Yeast Gene Function Prediction 
Many factors affect prediction performance, such as the model structure, the size of training 
data and the number of predictions made. We performed experiments for different settings 
and search for the setting at which the best performance was achieved. A graphical output of a 
trained split HMM model is shown in Figure 3 for function class 32 (cell rescue, defense and 
virulence in Table 1). Only the first eight expression measurements are shown. Six emission 
symbols plus a missing symbol are color-coded corresponding to the relative expression level 
in the microarray image. The thickness of each edge represents the transition probability. The 
width of each vertical bar represents the probability of each symbol at a specific state. It is 
obvious that in the high expression value state (at top of the chain), the observed expression 
measurements are also relatively high (the bar widths are wider at 3 to 6); while in the low 
expression value state (at bottom of the chain), the observed expression measurements are also 
relatively low (the bar widths are wider at 0 to 2). 
Since a single gene may have multiple functions, we can make multiple predictions for a 
testing gene. Besides choosing the function class with the highest posterior probability, we 
 

 
Fig. 3. HMM training results for class 32 (cell rescue, defense and virulence). Only the first 
eight expression measurements are showed here. Six emission symbols plus a missing 
symbol are color-coded corresponding to the relative expression level in the microarray 
image (red high expression and green low expression). The thickness of each edge 
represents the transition probability. The width of each vertical bar represents the 
probability of each symbol at a specific state.  
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can choose the second highest, the third highest, and so on. This procedure is termed single-
dip, double-dip, and trip-dip, etc. The prediction performance at different dips was shown in 
Figure 4c. The precisions achieved for single- and double- dip settings are about 60% or higher 
and for triple-dip is about 50%. The recalls are around 30% for single-dip, but can reach 51% 
when multiple predictions are made (triple-dip). The overall prediction accuracy is 
significantly higher than that of SVMs and KNNs (40% precisions, 30% recalls). From Figure 
4c, we can also see that precision and recall are inherently conflicting measures such that 
improving one will often be at a cost of the decrease of the other if other conditions are same. 
From Figure 4a and Figure 4b, the number of TPs, the number of predictions (TPs+FPs), 
precision and recall generally increase as the size of training set increases. At the n-fold cross 
validation (i.e. LOOCV), HMM-based method achieved an overall prediction precision of 
67%, which outperforms other existing methods (40% precisions in SVMs and KNNs). From 
Figure 4a and 4b, we also observed that the split HMMs seem to be a more conservative 
method than the chain HMMs. At the same level of fold, the chain HMMs tend to have 
higher TPs and recalls than the split HMMs, but lower precisions than the split HMM.  
Precision is the most important evaluation measurement for prediction, because it tells 
directly how likely the prediction is correct. Recall, on the other hand, tells how sensitive the 
prediction is. Figure 4d shows that the split HMMs generate higher precisions than the chain 
HMMs at the same level of recall. However, in general the chain HMMs show higher recalls 
than the split HMMs. Table 1 shows the detailed prediction results for each function class of 
genes. Only five classes have a precision less than 60%. 
 

 
Fig. 4. Testing results of various experiment settings. a. comparison of recalls between chain 
HMM and split HMM. b. comparison of precisions between chain HMM and split HMM. c. 
pattern of precisions and recalls for multiple predictions. d. relationship between precisions 
and recalls. 
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Function 
Entry Annotation |TP| |TP|+|FP| |TP|+|FN| Precision Recall 

01 metabolism 199 295 631 67.5% 31.5% 
01.01 amino acid metabolism 24 29 137 82.8% 17.5% 
01.03 nucleotide metabolism 15 24 94 62.5% 16.0% 
02 energy 72 105 159 68.6% 45.3% 

10 cell cycle and DNA 
processing 203 342 388 59.4% 52.3% 

10.01 DNA processing 42 47 186 89.4% 22.6% 

10.01.03 DNA synthesis and 
replication 3 3 77 100% 3.9% 

10.03 cell cycle 44 64 265 68.8% 16.6% 

10.03.01 mitotic cell cycle, cell 
cycle control 16 17 217 94.1% 7.4% 

10.03.02 meiosis 1 1 44 100% 2.3% 
11 transcription 346 623 553 55.5% 62.6% 
11.02 RNA synthesis 92 157 354 58.6% 26.0% 
11.04 RNA processing 56 76 170 73.7% 32.9% 
11.04.01 RNA processing 21 34 54 61.8% 38.9% 

11.04.03 
mRNA processing 
(splicing, 5'-, 3'-end 
proc) 

16 16 100 100% 16.0% 

12 protein synthesis 162 204 300 79.4% 54.0% 
12.01 ribosome biogenesis 105 108 176 97.2% 59.7% 

14 
protein fate (folding, 
modification, 
destination) 

176 285 448 61.8% 39.3% 

14.07 protein modification 16 16 139 100% 11.5% 
14.13 protein degradation 40 43 116 93.0% 34.5% 

14.13.01 
cytoplasmic and 
nuclear protein 
degradation 

29 29 83 100% 34.9% 

20 
cellular transport, 
transport facilitation 
and routes 

207 392 431 52.8% 48.0% 

20.01 transported compounds 
(substrates) 36 42 151 85.7% 23.8% 

20.03 transport facilitation 7 7 79 100% 8.9% 
20.09 transport routes 64 112 367 57.1% 17.4% 
20.09.18 cellular import 5 5 95 100% 5.3% 

32 cell rescue, defense and 
virulence 43 56 143 76.8% 30.1% 

32.01 stress response 21 27 92 77.8% 22.8% 
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Function 
Entry Annotation |TP| |TP|+|FP| |TP|+|FN| Precision Recall 

32.07 detoxification 5 6 49 83.3% 10.2% 

34 interaction with the 
cellular environment 42 45 212 93.3% 19.8% 

34.01 ionic homeostasis 9 9 89 100% 10.1% 
34.01.01 homeostasis of cations 3 3 83 100% 3.6% 

34.11 cellular sensing and 
response 21 22 125 95.5% 16.8% 

34.11.03 chemoperception and 
response 21 22 125 95.5% 16.8% 

42 biogenesis of cellular 
components 72 108 263 66.7% 27.4% 

42.01 cell wall 7 7 84 100% 8.3% 
42.04 cytoskeleton 6 7 71 85.7% 8.5% 
42.16 mitochondrion 36 46 71 78.3% 50.7% 
43 cell type differentiation 12 12 193 100% 6.2% 

43.01 
fungal/microorganismi
c cell type 
differentiation 

12 12 193 100% 6.2% 

Total  2307 3458 7607 66.7% 30.3% 

Table 1. Detailed prediction results on 40 gene classes in yeast time-series gene expression 
dataset [5]. For training purposes in HMM, only 40 gene classes were included which have 
at least 100 ORFs in MIPS. The results were based on the split-HMMs using 3-fold cross 
validation. 
Application 2—Human Tumor CNA Prediction 
Using cross validation, HMM-CNA was applied to 64 MCLs, on which both GEP and CGH 
experiments were performed [22]. The entire dataset was split into training and testing 
datasets. In the training dataset, the HMM model was trained by the paired GEP and CGH 
data on the same tumor samples, and in the testing dataset, the specified HMM model was 
applied to the GEP data for a new tumor sample to predict its CNAs. The predicted gains 
and losses were compared with those identified by experimental CGH on the gene level for 
the sensitivities and specificities, and on the cytoband level for the recurrent genetic 
abnormalities.  
Gene-Level Validation 
We first evaluated HMM Viterbi decoding method by sensitivity, specificity and accuracy 
against experimental CGH in predicting gain and loss of each gene for all the samples using 
LOOCV. For comparison purpose, the performance of rGEP and sGEP methods were also 
included. Table 2 summarized the average sensitivity, specificity and accuracy for all 
chromosomes on 64 MCL samples. Figures 5 showed the performance on individual 
chromosomes for sensitivity (A) and specificity (B). In general, sensitivity was improved from 
40% in GEP to 45% in sGEP and to 75% in HMM, and specificity from 70% in GEP to 85% in 
sGEP and to 90% in HMM, in predicting gain; in predicting loss, sensitivity from 30% in GEP 
to 50% in sGEP and to 60% in HMM, and specificity from 80% in GEP to 90% in sGEP and 
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HMM. These results suggested that the HMM were able to capture the hidden genomic 
CNA information buried in the GEP data; while directly mapping GEP status to CGH status 
without any learning process, such as rGEP and sGEP methods, could not predict well. 
 

 Sensitivity (%) Specificity (%) Accuracy (%) 

rGEP 38.45± 2.93 71.43± 0.58 69.46± 1.50 

sGEP 42.77± 10.42 86.33± 2.97 83.59± 3.48 
 

Gain 
HMM 74.49± 17.77 88.56± 4.78 87.50± 5.59 

rGEP 28.26± 3.70 80.94± 0.70 77.71± 3.47 

sGEP 50.66± 24.13 92.71± 2.00* 89.19± 3.63 
 

Loss 
HMM 59.63± 17.22 90.63± 4.91 89.30± 5.69 

Table 2. Sensitivity, specificity and accuracy of HMM, rGEP and sGEP as compared to 
experimental CGH. 
The HMM prediction were good for the majority of chromosomes, but we noticed that on 
some chromosomes HMM prediction was not good, such as chromosomes 1, 6, 9, 10 and 13 
for gain and chromosomes 4, 5, 15 and 18 for loss. This is due to infrequent aberrations and 
hence insufficient training data for the gains or losses on those chromosomes. For example, 
in the CGH data of the 64 MCL cases, only one, three, one, two and one cases were observed 
with gain on chromosomes 1, 6, 9, 10 and 13, respectively, and two, one, one and two cases 
with loss on chromosomes 4, 5, 15 and 18, respectively.  
Cytoband-Level Validation 
Cytobands are defined as the chromosomal areas distinguishable from other segments by 
appearing darker or lighter by one or more banding techniques for karyotype description. 
To compare HMM prediction with the “gold standard” experimental CGH on the same 
resolution (our experimental CGH detected gains and losses on cytobands), we also 
determined cytoband-level gains and losses from HMM by applying a smoothing algorithm 
as described in Method section.  
Figures 6 showed the results of cytoband level gains and losses on MCL dataset. The two 
HMM decoding methods, Viterbi and Posterior, were shown in panels A and B, 
respectively, where loss frequencies for cytobands (i.e. the number of cases harboring a loss 
on a cytoband) were shown on left-sided bars and gain frequencies on right-sided bars. In 
Posterior decoding (Figure 6B), as expected, the frequencies of gains and losses decrease as 
posterior probability increases (p=0.5, 0.6, 0.7, 0.8 and 0.9), and those frequencies are highly 
correlated (Pearson's correlation coefficients around 0.99, Table 3). Comparing the results 
from Viterbi (panel A) and Posterior (panel B), a high concordance was also observed 
(Pearson's correlation coefficients around 0.98, Table 3). Therefore, the Viterbi method was 
used to represent HMM in comparison of the experimental CGH side by side in panel C.  
Table 3 showed that Pearson's correlation coefficients between HMM and CGH are around 
0.8 for gains and losses. In Figure 6C, gains and losses were shown separately with CGH 
results colored yellow above X axis and HMM results colored red below X axis. Apparently, 
the majority of the frequent gains and losses predicted by HMM are in good concordance 
with those identified by experimental CGH, such as gains of 3q, 7, 8q, 15q and 18 and losses 
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Fig. 5. Sensitivity (A) and specificity (B) in predicting gain and loss regions by GEP, sGEP 
and HMM in 64 MCL. 
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of 1p21-p31, 6q, 8p, 9p, 9q, 11q21-q23, 13 and 17p13-pter. Those regions have also been 
revealed as high-frequency chromosomal alteration regions in various studies using 
conventional cytogenetics, CGH and array CGH {Bea, 2005 #38}.  
 

(A) Viterbi              (B) Posterior                        (C) Comparison of vCGH and CGH

30

20

10

0

10

20

30 CGH vCGH

30

20

10

0

10

20

30 CGH vCGH

1         2            3         4         5         6        7 8      9     10    11    12    13    14   15  16  17  18

Chromosomes 

1         2            3         4         5         6        7 8      9     10    11    12    13    14   15  16  17  18

Chromosomes 

CGH vCGH

CGH vCGH
Gain

Loss

20   10    0    10   20

Number of cases

20    10     0    10    20

Number of cases

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13
chr14
chr15
chr16
chr17
chr18

Loss 0.9
Loss 0.8
Loss 0.7
Loss 0.6
Loss 0.5
Gain 0.9
Gain 0.8
Gain 0.7
Gain 0.6
Gain 0.5

Loss  Gain                         Loss  Gain

N
um

be
r o

f c
as

es
N

um
be

r o
f c

as
es

(A) Viterbi              (B) Posterior                        (C) Comparison of vCGH and CGH

30

20

10

0

10

20

30 CGH vCGH

30

20

10

0

10

20

30 CGH vCGH

1         2            3         4         5         6        7 8      9     10    11    12    13    14   15  16  17  18

Chromosomes 

1         2            3         4         5         6        7 8      9     10    11    12    13    14   15  16  17  18

Chromosomes 

CGH vCGH

CGH vCGH
Gain

Loss

20   10    0    10   20

Number of cases

20    10     0    10    20

Number of cases

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13
chr14
chr15
chr16
chr17
chr18

Loss 0.9
Loss 0.8
Loss 0.7
Loss 0.6
Loss 0.5
Gain 0.9
Gain 0.8
Gain 0.7
Gain 0.6
Gain 0.5

Loss  Gain                         Loss  Gain

N
um

be
r o

f c
as

es
N

um
be

r o
f c

as
es

 
Fig. 6. Cytoband-level gains and losses by HMM and CGH on 64 MCLs. (A) HMM Viterbi 
method. (B) HMM Posterior method with a series of probability cutoffs (p=0.5, 0.6, 0.7, 0.8 
and 0.9). In (A) and (B), left-sided bars correspond to losses whereas right-sided bars to 
gains. On Y axis are the cytobands ordered from pter to qter (from top to bottom) for each 
chromosome and on X axis, the length of each bar indicates the gain and loss frequencies, 
i.e. the number of cases harboring a gain or loss on a cytoband. (C) Comparison of HMM 
and CGH where Viterbi method was used to represent HMM. Gain and loss were shown 
separately. CGH results were shown in yellow (above X axis) and HMM prediction were 
shown in red (below X axis).  On X axis, each bar represents a cytoband ordered from pter to 
qter for chr1 to chr18. On Y axis, the height of each bar indicates frequency, i.e. the number 
of cases horboring a gain or loss on a cytoband. 
There are also some limitations of the approach due to utilization of transcripts-based GEP 
data. For example, it may not predict well for regions with few genes (also called “gene 
desert”), or if the genes in a region are not expressed at a sufficiently high level for GEP. The 
HMM approach is also limited by the design of the GEP arrays. For example, on Affymetrix 
HG-U133 plus 2 platform, there are no probes distributed on the p arms of chromosomes 13, 
14, 15, 21 and 22, and hence those regions are unpredictable for gains or losses by HMM. 

5. Conclusions  
In this chapter, we demonstrated two applications using HMMs to predict gene functions 
and DNA copy number alternations from microarray gene expression data. In the first 
application of HMM on yeast time-series expression data, the overall prediction accuracy of 
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HMM Posterior  
CGH 

HMM 
Viterbi p_0.5 p_0.6 p_0.7 p_0.8 p_0.9 

CGH 1 0.766 0.734 0.745 0.744 0.752 0.756 
HMM Viterbi 0.828 1 0.970 0.978 0.978 0.978 0.973 

p_0.5 0.831 0.978 1 0.990 0.986 0.982 0.969 
p_0.6 0.828 0.980 0.996 1 0.996 0.991 0.978 
p_0.7 0.828 0.983 0.992 0.995 1 0.993 0.981 
p_0.8 0.827 0.985 0.988 0.992 0.996 1 0.990 

H
M

M
 P

os
te

ri
or

 

p_0.9 0.820 0.981 0.983 0.986 0.991 0.993 1 

Table 3. Pearson correlation of cytoband-level gain and loss frequencies between CGH, 
HMM Viterbi, and HMM Posterior. Gain were shown in the bottom, and loss in the top 
triangles. 
our model is significantly higher than that of SVMs and KNNs. A properly designed HMM 
is capable of modeling the three features of expression data: pattern variation within a class, 
experimental noise, and Markov property. The extraordinary flexibility of HMMs allows us  
to extend the current model in several directions. One of the current developments is to 
extend the HMM model to Bayes nets for functional prediction from heterogeneous data 
sets. With appropriately constructed conditional distribution, all kinds of available data can 
be applied for training and inference using Bayesian network model. Besides the functional 
prediction of unknown ORFs, one potential application of this method is to search for ORFs 
of functional homology in databases. To do this, a proper cut-off likelihood value (or 
equivalently a LOD score) must be specified. Whenever a homolog is found (i.e., beyond the 
cut-off value), it may be included as a training set to reinforce the training process.  
In the second application of HMM on the human tumor microarray gene expression data, 
we proposed a novel computational approach based on HMMs to predict genetic 
abnormalities in tumor cells. Taking advantage of the rich GEP data already publicly 
available, HMM may significantly enhance the identification of genetic abnormalities in 
cancer research. Our model is among the first which employed HMM for the purpose of 
GEP-to-CGH prediction. We expected the HMM to capture two primary sources of 
uncertainty embedded in genomic data: the significant but subtle correlations between GEP 
and CGH, and the sequential transitions of CNAs along chromosomes. We applied the 
HMM model to 64 MCL samples and using cross validation, HMM achieved 80% 
sensitivity, 90% specificity and 90% accuracy in predicting gains and losses as compared to 
the experimental CGH on the same tumor cases. The recurrent gains and losses predicted by 
HMM on cytobands were concordant with those identified by CGH. In addition, our model 
does not only highlight DNA CNA regions but also served as an integrative tool cross-
linking genomic and transcriptiomic data for functionally relavent genomic abnormal 
regions. As this HMM-based method is a general computational tool which can be applied 
to any types of tumors, it may significantly enhance the identification of genetic 
abnormalities in cancer research. To improve the model, we plan to add relevant biological 
parameters to preprocess or filter the data in prediction. We will consider gene densities, 
transcriptional units, regional epigenomic silencing, genes that not expressed in normal 
samples, common “genomic aberrations”, and human genomic copy number polymorphism 
in the model. 
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1. Introduction

Hidden Markov models (HMM) have been successfully applied in molecular biology,
especially in several areas of computational biology. For example, it is used to model protein
families, to construct multiple sequence alignments, to determine protein domains in a query
sequence or to predict the topology of transmembrane beta-barrels proteins (Bateman et al.,
2004; Durbin et al., 1998; Krogh et al., 1994; Pang et al., 2010).

Proteins are macromolecules responsible for performing many important tasks in living
organisms. The function of proteins strongly depends on their shapes. For example, carrier
proteins should recognize the molecules they carry such as hemoglobins should recognize
oxygen atoms, anti-bodies their antigens,... Protein misfolding may cause malfunctions such
as Parkinson and Alzheimer diseases. Therefore, it is necessary to know the structure of a
protein to understand its functions and the disturbances caused by the inappropriate behavior
derived from misfolding. Precisely this knowledge makes it possible to develop drugs and
vaccines and synthetize proteins which, for example, disable the regions of virus activity,
preventing them from acting on the cells.
The exploration of protein structures, in its initial phase, consisted in simplifying
three-dimensional (3D) structures into secondary structures, including the well-known
repetitive and regular zone - the α-helix (30% of protein residues) and the β-sheet (20%). The
remaining elements (50% of residues) constitute a category called loops, often considered as
structurally variable, and decomposed into some subcategories such as turns (see Frishman
& Argos, 1995, for example). Although the prediction of secondary structure types can be
achieved with a success rate of 80%, the description of the secondary structures of a protein
does not provide per se an accurate enough description to allow the characterization of the
complete structure of proteins.
Moreover, protein structures are determined experimentally mostly by X-ray crystallography
and nuclear magnetic resonance (NMR) techniques. Both require sophisticated laboratories,
are time and cost expensive and cannot be applied to all proteins. On the other hand,
the methods consisting in protein sequencing are easier and less expensive than methods
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implying structure determination. The recent genome sequencing projects (Siva, 2008;
Waterston et al., 2002) have provided sequence information for a large number of proteins.
Consequentely, Swiss-Prot database release 57.6 (Boeckmann et al., 2003), a curated protein
sequence database provided by the Universal Protein Knowledgebase (UniProt) consortium,
contains sequences of more than 13,069,501 distinct proteins (Consortium, 2010), whereas the
Protein Data Bank (PDB) (Henrick et al., 2998) contains 70,000 distinct protein structures.
Thus, there is an increasing gap between the number of available protein sequences and
experimentally derived protein structures, which makes it even more important to improve
the methods for 3D structure protein prediction.
Thus, an important challenge in structural bioinformatics is to obtain an accurate 3D structural
knowledge about proteins in order to obtain a detailed functional characterization and a better
understanding. With the increase of available 3D structures of proteins, many studies (Baeten
et al., 2010; Brevern et al., 2000; Bystroff et al., 2000; Kolodny et al., 2002; Micheletti et al., 2000;
Pandini et al., 2010; Unger et al., 1989), have focused on the identification of a detailed and
systematic decomposition of structures into a finite set of generic protein fragments. Despite
the fact that some libraries provide an accurate approximation of protein conformation, their
identification teaches us little about the way protein structures are organized. They do not
consider the rules that govern the assembly process of the local fragments to produce a
protein structure. An obvious mean of overcoming such limitations is to consider that the
series of representative fragments describing protein structures are in fact not independent
but governed by a Markovian process. In this chapter, the first part presents the development
of a HMM approach to analyze 3D protein architecture. We present the use of a HMM
to identify a library of representative fragments, called Structural Letters (SLs) and their
transition process, resulting in a structural alphabet, called HMM-SA, decomposing protein
3D conformations. The aim of this part is to assess how much HMM is able to yield
insights into the modular framework of proteins, i.e. to encode protein backbones into
uni-dimensional (1D) sequentially dependent SLs. The HMM-SA is a very performant tool
to simplify 3D conformation of proteins and such a simplification can constitute a very
relevant way to analyze protein architecture. Different applications of HMM-SA for structure
analysis are listed, such as loop modelling, protein structure comparison, analysis of protein
deformation during protein interactions, analysis of protein contacts, detection and prediction
of exceptional structural patterns.
The second part of the chapter presents a contribution to the important challenge of protein
structure prediction by predicting through another HMM the presence/absence of functional
patterns identified thanks to HMM-SA. The method can be decomposed into two steps: in
a first time, a simple link between amino-acids (AAs) and SLs is learned through boolean
functions, then, a HMM is used to take into account the results of the first step as long
as the dependencies between successive SLs. The first step is independent on the studied
pattern whereas a new HMM is automatically built for each new pattern. The method will be
illustrated on three examples.

2. HMM-SA obtention

2.1 Datasets and description of three dimensional conformations
The data extraction of HMM-SA is performed from a collection of 1,429 non-redundant
protein structures (Berstein et al., 1977) extracted from the PDB. The selected proteins have
a crystallographic resolution lower than 2.5 Å and less than 30% sequence identity with one
another (Hobohm et al., 1992). Because the structure of the model is based on local dependence
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between successive residues in each protein, all non-contiguous protein chains (i.e. those
containing fragments that spanned gaps) were eliminated from the dataset. The polypeptide
chains were scanned in overlapping windows that encompassed four successive α-carbons
(Cα), thereby producing a succession of short-backbone chain fragments. As in some previous
studies (Pavone et al., 1996; Rackovsky, 1993; Rooman et al., 1990; Smith et al., 1997), we used
four-residue lengths, which contain enough information to find basic structural elements:
four-residue turns for α-helices, bridges for β-sheets and undefined loop structures. Moreover,
a four-residue segment is small enough to keep the number of SL categories reasonable.
Increasing the number of residues per segment would introduce larger variability and would
lead to a larger number of categories.
The collection of 1,429 proteins represents a total of 332,493 four-residue fragments. Protein
structures are described using the distances between Cα, see Figure 1a, as series of overlapping
fragments of four-residue length (Camproux et al., 1999a). Let Cα1 ,Cα2 , . . . ,Cαn be the n
carbon atoms of the backbone structure of the protein. From these data, we build a sequence
X0, X1, . . . , Xn−4 such as Xi = (X1

i , X2
i , X3

i , X4
i ) ∈ R4 with:

X1
i = ||−−−−−−→Cαi+1Cαi+3 ||; X2

i = ||−−−−−−→Cαi+1Cαi+4 ||; X3
i = ||−−−−−−→Cαi+2Cαi+4 ||;

X4
i =

−−−−−−→
Cαi+1Cαi+2 ∧

−−−−−−→
Cαi+2Cαi+3

||−−−−−−→Cαi+1Cαi+2 ∧
−−−−−−→
Cαi+2Cαi+3 ||

× −−−−−−→Cαi+3Cαi+4 .

The three values X1
i , X2

i , X3
i correspond to distances between the non consecutive

(Cα1 ,Cα2 ,Cα3 ,Cα4 ) and X4
i the oriented projection of the last α-carbon Cα4 onto the plane

formed by the three first ones, as shown in Figure 1a. The three distances between consecutive
Cα are not considered in this approach because fewly variable.
The first and third distances (X1

i , X3
i ) describe the opening of the beginning and end of a

four-residue fragment and X2
i describes the global length of this fragment. X4

i is proportionnal
to the determinant of the three vectors defined by the successive Cα pairs normalized by the
norm or modulus of the first two vectors. This descriptor is proportional to the distance of
the four Cα to the plane P built by the first three Cα. The sign of X4

i indicates the topological
orientation of the fragment relative to P : trigonometric, i.e. the fourth α-carbon Cα4 is located
above P (for a positive value of X4

i ) and inverse trigonometric, i.e. the fourth α-carbon Cα4 is
located below P (for a negative value of X4

i ). X4
i not only gives the direction of the fragment

fold but also provides direct interpretable information about the volume of the fragment. A
flat fragment, i.e. with no volume, corresponds to a value of X4

i close to 0.

2.2 HMM modelling
In the first work, the idea was to consider the model of Figure 2 where all Xi are generated
independently from each other conditionally to one out of the K hidden states Si ∈ S =
{1, 2, . . . ,K} such as:

L(Xi|Si = r) ∼ N (μr,Σr) ∀r ∈ S (1)

with N (μr,Σr) four-dimensional multi-normal density with parameters (μr,Σr) describing
the average descriptors, the variability of each descriptor and the covariance between
descriptors as estimated on the associated fragments. We additionally consider two types
of model to identify a structural alphabet corresponding to K SLs: (i) a simple process without
memory or (ii) a HMM process with memory of order 1.
Model without Memory, denoted MM(order 0), assuming independence of the K SLs, is
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Fig. 1. Encoding of 3D conformation of proteins using HMM-SA with 27 SLs. (a)
Representation of the four descriptors (X1

i , . . . , X4
i ), used to describe the 3D conformation of

four successive Cα fragments. (b) Geometry of the final 27 SLs, ranked by corresponding
secondary structures. (c) 3D representation of the B chain of protein 1gpw colored according
to its SL encoding. (d) Final 1D SL encoding of the B chain of protein 1gpw.

identified by training simple finite mixture of four-dimensional multi-normal densities.
Model assuming that the sequence (Si) is distributed according to a homogeneous Markov
chain with starting distribution ν and transition matrix τ is defined by:

P(S1 = r) = ν(r) and P(Si+1 = s|Si = r) = τ(r, s) ∀r, s ∈ S . (2)

It hence results in a model with (14K + K2− 1) parameters.

2.3 Model selection: Statistical criteria to determine the optimal number of SLs
The classical model selection approach is based on the parsimony principle: we want to select
the model that better fits the data with the smallest possible complexity. This typically leads
to penalized likelihood criteria like the Bayesian Information Criterion (BIC, Schwartz, 1978)
which balances the log-likelihood of the model and a penalization term related to the number
of parameters of the model and the sample size. In the first work, structural alphabets of
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Fig. 2. Graph of dependencies in the simplest model with n = 7 Cα hence resulting in a total
of n− 3 = 4 SLs.

different sizes K, denoted SA−K were learned on two independent learning sets of proteins
by progressively increasing K, and using the two types of model detailed in section 2.2 (with
or without memory) and compared using BIC.

2.4 Encoding proteins
One ultimate goal is to reconstruct the unobserved (hidden) SL sequence of the polypeptidic
chains, given the corresponding four-dimensional vectors of descriptors, and to provide a
classification of successive fragments in K SLs. For a given 3D conformation and a selected
model (fixed number K of SLs), the corresponding best SL sequence among all the possible
paths in Sn = {1, 2, . . . , K}n can be reconstructed by a dynamic programming algorithm based
on Markovian process.
Once a model has been selected and its parameters estimated, we classically use the Viterbi’s
algorithm (Rabiner, 1989) in order to obtain the Maximum A Posteriori (MAP) encoding:

ŝMAP = argmax
s

�(θ̂|X = x, S = s). (3)

We used this approach to optimally describe each structure as a serie of SLs. This process of
compression of 3D protein conformation into 1D SL sequence is illustrated in Figure 1c,d, on
the structure of chain B of the amidotransferase (pdb ID: 1gpw_B). This protein is coloured
after HMM-SA encoding, according to its corresponding series of SLs.
Assessing the discretization of protein structures
For a given SL, the average Root-Mean-Square deviation (RMSd) between Cα coordinates,
that is an Euclidean distance of the fragments to their centroid best superimposed, is used to
measure the structural variability of each SL. For two given fragments, the RMSd between Cα

coordinates of superimposed fragments is used to measure their structural proximity.
To reconstruct the protein 3D structures from their description as a series of SLs, and to
keep some possible comparisons, we use the building procedure employed by Kolodny et al.
(2002). Briefly, the fragments are assembled using an iterative concatenation procedure to
adjust 3D conformation.

3. HMM-SA as a general concept to simplify 3D protein structure analysis ?

3.1 Results of HMM-SA identification
HMM-SA is weakly dependent on the learning set
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Structural alphabet of increasing sizes using either HMM or MM are learned and compared
on the basis of their goodness of fit. The influence of the Markovian process is large. For
MM, no BIC optimum is reached until alphabet sizes of 70 whereas, for HMM, a larger
optimum is reached for 27 hidden states, which means a better fit of the data using HMM.
Interestingly, the Markov classification takes advantage of information implicitly contained
in the succession of observations to greatly reduce the number of SLs, while keeping a more
homogeneous repartition of fragments into the different SLs (the least frequent SL represents
1.5% of fragments).
Similar results are obtained using two independent learning sets of 250 proteins with
similar BIC curves evolution. It follows that, at the optimum, structural alphabet is very
weakly dependent on the learning set, which in turn suggests that the learned model can
be considered as representative of all protein structures. The optimal structural alphabet,
HMM-SA, obtained by using statistical criterion BIC, corresponds to 27 SLs and their
transition matrix. Main characteristics of HMM-SA (Camproux et al., 2004) are briefly
summarized below.
Geometrical and logical description of HMM-SA
The 27 identified SLs are denoted as (case sensitive) structural letters: namely a, A, B, ...,Y, Z.
The set of SLs, sorted by increasing stretches is presented in Figure 1b and their transitions
constitute the structural alphabet, HMM-SA. The local fit approximation is low, as quantified
by the average Cα RMSd to the centroid associated with each SL (0.23 ± 0.14 Å). Concerning
description of logic of protein architecture, 66% of the 729 possible transitions between SLs
have frequencies of less than 1%. The existence of pathways between SLs is observed, obeying
some precise and unidirectional rules. These results are detailed in Camproux et al. (1999b;
2004).
Actually, SLs associated with close shapes have been distinguished by different logical rules.
SLs A, a,V,W appear almost exclusively in α-helices (more than 92% of associated fragments
assigned to α-helices) while five SLs L, N, M, T, X are mostly located in extended structures
(from 47% to 78% of associated fragments assigned to strands). Interestingly, the other 18 SLs
are involved in loops description, which is particularly interesting given the variability of loop
structures and their implication in numerous important processes.
The stochastic HMM approach allows (i) the characterization of different short structural 3D
SLs (ii) the description of the heterogeneity of their corresponding short fragments and (iii)
the study of their global organization by quantifying their connections. The transition matrix
only shows a limited number of transitions between SLs, indicating that the connections by
which the SLs form the protein structures are well organized.
Moreover, the learning process attempts to optimize the likelihood associated with the entire
trajectories of the proteins, resulting in propagation of such long range conditioning to the
short range constraints that are learned. Our model fits well the previous knowledge related
to protein architecture organisation and seems able to grab some subtle details of protein
organisation, such as helix sub-level organisation schemes. For instance, the two closest SLs
A, a in terms of geometry, close to canonical α-helix, are distinguished by different prefered
transitions. Taking into account the dependence between the states results in a description
of local protein structures of low complexity. Although we use short fragments, the learning
process on entire protein conformations captures the logic of the assembly on a larger scale.
HMM-SA shows very reasonable performance in terms of reconstruction of the whole protein
structure accuracy, (RMSd value less than 1 Å), compared to other recent fragment libraries
optimized in a purpose of reconstruction (Kolodny et al., 2002; Micheletti et al., 2000).

274 Hidden Markov Models, Theory and Applications



Subsequently, HMM-SA provides some kind of compression from the 3D protein coordinate
space into the 1D structural alphabet space (see Figure 1 c,d). From such 1D encoding and
the associated logical rules, it is possible to tackle the exploration of 3D protein conformations
using 1D techniques, as performed in classical sequence analysis. This widens the perspective
of being able to work with a 1D representation of 3D structures much beyond the simple
search of exact words, through the use of the classical 1D AA alignment methods. We have
explored different directions in which this facility could be of interest.

3.2 Different sucessful applications of HMM-SA
Different applications of HMM-SA have been explored, such as:

• study of conformations of side chains in protein structures (Gautier et al.,
2004). It establishes a set of tools for analyzing lateral chain conformations of
proteins in the server Ressource Parisienne en Bioinformatique Structurale (RPBS,
http://bioserv.rpbs.jussieu.fr/cgi-bin/SCit);

• improvement of protein fold recognition from AA content compared to classical methods
by adding Markovian information (Deschavanne et al., 2009);

The detection and analysis of structural similarities of proteins can provide important
insights into their functional mechanisms or relationship and offer the basis of
classifications of the protein folds. The global 3D alignment of two proteins is NP-hard
(Lathrop, 1994). Therefore, approximate methods have been proposed to achieve fast
similarity searching, based on the direct consideration of protein α-carbon coordinates
(Gibrat et al., 1996; Holm & Sander, 1993; Shindyalov & Bourne, 1998). Using HMM, the
lod-score matrix of similarity between SLs allows the quantification of the similarity of
protein fragments encoded as different series of SLs. It is possible to use it with classical
methods developed for the AA sequence similarity search and thus to reduce 3D searches
as a 1D sequence alignment problem (Guyon et al., 2004);

• analyzing protein contacts (Martin et al., 2008b). This study showed that the description
of protein contacts (intra and inter-molecular) by the local structure residues (described by
HMM-SA) involved in these contacts is more sensitive than that provided by type of AAs
involved in contacts;

• analyzing the deformation of proteins during interaction (Martin et al., 2008a): HMM-SA
has also been used to analyze the regions of protein/protein interactions before and after
contact (Martin et al., 2008b). This study identified regions undergoing deformation, and
the identification of common structural motifs from the strain involved in the interaction
of two proteins;

• deciphering the shape and deformation of secondary structures (Baussand et al., in press).
The conformation of secondary structures can be further analyzed and detailed thanks to
HMM-SA which allows a better local description of protein surface, core and interface in
terms of secondary structure shape and deformation. Induced-fit modification tendencies
should be valuable information to identify and characterize regions under strong structural
constraints for functional reasons;

• in addition, HMM-SA was shown to be a powerful tool for the analysis of protein loops,
the most variable and flexible regions in proteins (Camproux et al., 2001; Regad et al., 2006).
They are, however, often known to play an important role in protein function and stability

• performing fast 3D similarity search (RPBS, http://bioserv.rpbs.jussieu.fr/cgi-bin/SA-Search).
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(Fetrow, 1995; Fernandez-Fuentes et al., 2004). The HMM-SA was optimised in terms of
3D local description of proteins and resulted in precise and detailed description of 3D
conformations into 27 SLs: 18 SLs being focused on loop description. Indeed, the encoding
of loop structures allowed the establishment of a systematic methodology to extract all the
structural motifs of seven residues in all the loops, especially long loops. Analysis of these
patterns and their environment has enabled a quantification of structural redundancy in
loops. An analysis of their distribution in the short and long loops has shown that the short
and long loops share a number of structural motifs (Regad et al., 2008);

• concerning the information of AA sequence, all the SLs of HMM-SA have some significant
AA sequence specificity compared to the profiles of a collection of protein fragments
(Camproux & Tuffery, 2005). This dependence can be used to generate direct candidate
folds from AA sequence in a two-steps scheme of prediction. First, the goal is to predict
local SL series from AA sequence. For short fragments, available 3D conformation can be
found in the PDB (using Guyon et al., 2004); for longer ones (SL-fragments not available in
the PDB), local SLs or SL-words could be assembled to generate 3D structures, following
the same principles as Maupetit et al. (2009);

• concerning the 3D reconstruction, a recent paper (Maupetit et al., 2009) has shown the
performance of HMM-SA for peptides (short SL-fragments). Rational peptide design and
large-scale prediction of peptide structures from AA sequences remain a challenge for
chemical biologists. This paper proposed a de novo modelling of 3D conformations for
peptides between 9 and 25 amino acids in aqueous solution. Using HMM-SA, PEP-FOLD
assembles the predicted SL fragment profiles by a greedy procedure driven by a modified
version of the OPEP coarse-grained force field;

• in addition, the HMM methodology of building structural alphabet has been proven to
identify a specific structural alphabet for porin proteins (i.e. transmembrane proteins).
This alphabet has helped to describe how fine these proteins are, specifically in terms of
beta strands composition (Martin et al., 2008c).

Actually, HMM-SA is a very interesting tool to study protein structures and hence function.
In particular, it is interesting to identify conserved SL-patterns having particularities such as
being associated to a specific function or to turns, for example. Then, the natural continuation
of such identifications is to provide a method being able to detect those patterns directly from
AA sequence. Thus, it makes it possible to annotate AA sequences with annotations identified
from 3D structure without knowing the conformation of the considered sequence.
The last section focuses on the prediction of patterns identified as specific to a function for
example.

4. Using HMM to detect interesting HMM-SA patterns

As previously introduced, sequencing technologies are constantly providing new AA
sequences with often few functional knowledge. Hence, being able to retrieve information
about new protein sequences is a critical problem.
In this context, automatic tools allowing to provide such information are of big interest. The
most common way to perform such a search is to identify patterns specific from a given
function for example and to design a prediction method. Information taken into account can
consist in different levels: only sequence (Ansari & Raghave, 2010; Sigrist et al., 2010), sequence
and structure (Halperin et al., 2008; Pugalenthi et al., 2008), only structure (Manikandan et al.,
2008; Polacco & Babbitt, 2006) or use of more general classifications: GO (Espadaler et al.,
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2006), SCOP (Tendulkar et al., 2010) ... In this section, the objective is to design a prediction
method only based on AA sequence in order to provide information for only sequenced
proteins.
However, sequence-based methods are likely to be limited with regards to structure-based
ones as structure is known to be better conserved than sequence (Chothia et al., 2003).
Hence, the proposed method will use HMM-SA as a structure-based middle step to identify
interesting structural patterns. As loops are very often implied in interactions (Ansari &
Helms, 2005; Saraste et al., 1990), stress is laid on patterns of interest found in loops. Those
patterns will be defined here as four SL words encoding seven AA residues. This length has
been chosen to obtain satisfying representativities (Regad et al., 2006). However, the prediction
method is independent on the pattern length and could be applied to any identified pattern.

4.1 Looking for interesting patterns
In bioinformatics, it is common to look for a pattern of interest in a potentially large set of
rather short sequences (upstream gene regions, proteins, exons, etc.). In DNA sequences,
it has been observed that functional sites have unusual frequencies: very frequent or
rare. Some methods used this observation to extract functional sites by defining them as
over- or under-represented sites. Their identification is usually achieved by considering a
homogeneous m-order Markov model of the sequence, allowing the computation of p-values
(probability that the expected occurrence of a word is larger than its observed occurrence).
Stationarity of the model is often assumed for practical reasons but this approximation can
result in some artifacts especially when a large set of small sequences are considered. No
specific development has taken into account the counting of occurrences in a large set of
short independent sequences as loop trajectories in HMM-SA space. A study aiming at
addressing this problem by deriving efficient approaches and algorithms to perform these
computations for both low and high complexity patterns in the framework of homogeneous
or heterogeneous Markov models has been developped in Nuel et al. (2010). More precisely,
this article proposed an exact method, enabling to take into account both non stationarity and
fragmentary structure of sequences, applied it on simulated and real sets of sequences and
actually illustrated that pattern statistics can be very sensitive to the stationary assumption.
Subsequently, a detailed analysis of statistically exceptional motifs, identified by HMM-SA,
with regards to SCOP superfamilies, groups of proteins with similar structure and function,
shed a new light on candidate patterns. Indeed, this study confirmed the link of those
potentially interesting patterns with functional motifs in loops and provide a systematic way
of identifying such patterns (Regad et al., in revision).
Then, once a pattern has been confirmed as interesting, it is of big interest to be able to predict
its presence and thus, the presence of the identified function, directly from a protein AA
sequence, even if the 3D structure is unknown. It is important to notice that among identified
patterns only the ones showing AA sequence specificities will be likely to be predicted directly
from AA sequences. The proposed prediction method is divided into two steps: the first one
aims at assigning to each four-AA sequence a SL profile, this will not be deeply describe as
outside the scope of this chapter. The second step makes use of a HMMmodel to combine the
profiles provided by step 1 and compute a final probability of finding the considered motif at
each position in the sequence.
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4.2 The initial data
We use the AA sequences and corresponding SL encoding of 16,995 loops extracted from
the PDB with at most 25% of sequence identity. This limited sequence identity rate aims at
avoiding any bias in the learning step. The length of loops ranges from 1 to 1,261 SL (hence
from 4 to 1,264 AA) with an average of 116 and a standard deviation of 129. They are extracted
from 7,778 different proteins.

4.3 First step outline: from four amino-acids to one structural letter profile
The first step input is a 4-AA sequence fragment. In a practical point of view, each overlapping
4-AA words of the considered AA sequence will successively become input. The goal is to
find what should be the SL encoding for this fragment. However, as there is no exact bijection
between AA and SL sequences, it would be unappropriate to give only one possible SL for
each 4-AA fragment. Hence, a SL profile will be the first step output. It consists in a score
quantifying the probability of finding each SL at the considered location. This score is based
on votes provided by 351 rules: there is one rule for each SL couple (27× 26/2).

Fig. 3. Example of classifier used to discriminate between two letters A and B: if there is (G in
second position) AND (no P in fourth position) OR (a G in fourth position) then the sequence is
affected to A else to B.

It is really appropriate to illustrate those rules through a tree-like representation. Indeed, each
rule is a combination of binary questions about the presence or absence of a given AA for
a given position (between 1 and 4) in the considered 4-AA fragment. For instance, Figure 3
gives an example. Contrary to classical decision trees, this tree has to be read from leaves to
root: by sequentially answering to each leaf question (there is or there is not such and such an
AA at such and such a position) and combining the answers through the AND/OR operators
contained in nodes, a global yes/no answer is obtained allowing to affect the AA sequence
to one of the two SLs compared through this classifier. Hence, the 351 rules will provide
votes concerning the 4-AA fragment which constitute a kind of profile for the true encoding
of this sequence into one structural letter. The optimization of the rules is performed through
genetic programming (Koza, 1992; Langdon & Poli, 2002) by scoring the rules through their
parsimony and the entropy gain they achieve.

4.4 Second step: specific pattern modelling and application to prediction
Due to the complexity of the prediction problem (impossibility to build an easy bijection
between AAs and SLs), the first step cannot be sufficient to answer the problem. Indeed,
some SLs are easy to discriminate through their AA sequence. For example, SLs B and M are
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Fig. 4. Global unfolding of Step 1 and two examples of classifiers. A 4-AA long fragment
(argg) is given as input of the 351 classifiers, each one voting for one out of the two SLs it
compares (ex.: B vs C and D vs P). Finally, a vector of 351 votes is obtained.

very well discriminated through their classifier: one out of the two subgroups obtained after
applying the classifier contains 3.2% of the B SL and 98.0% of the M. On the other hand, SLs
a and M are particularly difficult to distinguish through their AA sequence: one out of the
two subgroups obtained after applying the corresponding classifier contains all the SLs a and
80.6% of SLs M, which is a very poor classification. Hence, further information has to be taken
into account to be able to make decisions about a four-SL word. In this context, a particularly
interesting knowledge is about dependencies between SLs. It is the goal of the second step.
The aim of this step is to decide, given the results of the first step for four consecutive
SLs and through a scoring function, if the conformation adopted by the considered seven
residue fragment is likely to be encoded into a given four SL word identified to be linked to a
functional pattern.
As emphasized earlier, a real dependency exists between successive SLs, especially because of
overlaps. Hence, this dependency can be favourably used to build a model. A HMM has been
chosen to model the link between first step outputs and a given four SL word. This HMM is
described in Figure 5. In this model, hidden states are the true SLs while observed states are
outputs of step 1 for the correspondingAA sequence. Arrows between Si and Si+1 symbolizes
the dependency between successive letters called transition probabilities in HMM context and
arrows between Si and Oi represent the link between true SLs and step 1 outputs, namely the
output probabilities.
Thanks to this model, the objective of the second step is to compute the probability of the four
true SLs being the target functional pattern given the step 1 outputs for four successive (and
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Fig. 5. Structure of the HMM used to model the relationship between first step outputs and
true SLs for a seven residue fragment: (S1, S2, S3, S4) are the true SLs and
Oi = (o1i , o

2
i , . . . , o351i ) is the vector of votes obtained from step 1 for the four AA fragment

encoded by Si.

overlapping) four-AA fragments. Hence, we have to compute

P(S1:4|O1:4) = P(S1, S2, S3, S4|O1,O2,O3,O4). (4)

High values of this probability will indicate a strong assumption that the considered fragment
is likely to be encoded into the identified pattern and then to have the target function.
According to the chosen model,

P(S1:4|O1:4) = P(S1|O1)
4

∏
i=2

P(Si|Si−1)P(Si|Oi).

Now, P(Si|Oi) has to be computed. Assuming that the results of the 351 different trees are
independent,

P(Si|Oi) = P(Si|o1i , o2i , . . . , o351i ) =
351

∏
j=1

P(Si|oj
i).

This assumption is wrong for some comparisons (especially comparisons implying a common
SLwhich is well predicted) butmost of pairs of comparisons can be considered as independent
(results not shown).
Then, by Bayes theorem, and by denoting by S̄i the absence of Si, that is to say there is any of
the 26 other SLs,

P(Si|oj
i) =

P(oj
i |Si)P(Si)

P(oj
i |Si)P(Si) + P(oj

i |Si)P(Si)
.

Finally, P(Si), P(oj
i |Si) and P(Si|Si−1) are estimated on the dataset.

4.5 Applications
4.5.1 Prediction of an ATP-binding site specific motif
Previous studies (as described at the beginning of this section) have shown that fragments
encoded into the four SLs YUOD (see Figure 6(a)) are very often associated to ATP/GTP
binding sites. Indeed, in our database, 95% of fragments encoded into YUOD are associated
to this functional annotation in SwissProt database. Hence, being able to predict the encoding
into YUOD is really useful to predict this function for a new AA sequence.
The superimposition of several fragments encoded into YUOD is shown in Figure 6.
Moreover, this structural word has a high sequence specificity as shown in Figure 4, especially
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positions 1, 6 and 7. Thus, this structural word, involved in protein function (binding to
ATP/GTP), is a very good candidate for our approach.

Fig. 6. (a) Representation of several fragments encoded into YUOD. (b) Logo of the AA
sequences encoded into YUOD.

In our dataset, YUOD can be found 183 times in 181 proteins (two proteins contain two
occurrences). The model is applied on the whole proteins to study the ability of the computed
probability (Eq. 4) to discriminate between YUOD and YUOD (not YUOD). The ROC
curve associated to the logarithm of this probability is shown in Figure 7. It displays the
sensitivity (ability to retrieve YUOD) and specificity (ability to recognize YUOD) according
to the probability threshold chosen to split the words into YUOD and YUOD. The AUC
(area under curve) associated to this ROC curve is 0.9866. Hence, the computed probability
is really efficient to identify YUOD among all other words. Indeed, such a discrimination
quality is particularly valuable because of the ratio between the two classes: YUOD only
represents 0.52% of studied words. Then, according to the application requirements, several
thresholds can be defined providing different balances between sensitivity and specificity.
Some interesting threshold values and their corresponding parameters are enclosed in Table 1.
Very high values of specificity have been chosen, indeed the YUOD class is really large and
then only 1% of false positive (YUOD predicted as YUOD) can be a large number when
applied to big proteins or to several proteins.

Fig. 7. ROC curve (AUC = 0.9866) associated with the probability of having YUOD for a
given seven AA fragment (Se=sensitivity, Sp=specificity).
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Threshold -4829 -4805 -4732
Specificity 90.02 95.07 99.00
Sensitivity 97.81 93.44 69.95

Table 1. Sensitivity and specificity obtained for the identification of YUOD according to the
chosen log(probability) threshold.

An example of YUOD detection is given in Figure 8. It concerns the chain A of the Circadian
clock protein kinase kaiC (pdb ID: 2gbl_A). It originally contains two true YUOD occurrences
and four have been predicted through our model. Two out of the four positives (numbers 1
and 2) are exactly located at co-crystallized ATP binding sites (A and B). Moreover, among
the two false positives, number 3 adopts a 3D conformation which is really close to the one
observed at ATP binding sites. This example demonstrates the difficulty of evaluating a
prediction method for annotations. The evaluation of true positive and false negative can
be really precise when dealing with manually annotated and reviewed databases such as
Swiss-Prot but false positives may be true positive that have not yet been experimentally
verified. It is impossible to make a decision in this case.

Fig. 8. 3D representation of 2gbl_A co-crystallized with two ATP molecules (indicated by
lettered circles). The fragments identified as YUOD are indicated with numbered arrows.

4.5.2 Prediction of a SAH/SAM-binding site specific motif
S-adenosyl-methionine (SAM) and S-adenosyl-homocysteine (SAH) are molecules associated
to some methylation processes and are particularly studied in the context of antiviral drugs
research. It is then interesting to be able to predict their binding to proteins. The four-SL
word RUDO has been identified to be most of time associated to SAH/SAM in Swiss-Prot.
Moreover, it has a certain sequence specificity (results not shown).
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In our dataset, RUDO is found 39 times in 39 different proteins. The AUC associated to the
ROC curve corresponding to the log(probability) computed by our method is 0.9606. The
specificity and sensitivity obtained with different thresholds for the log(probability) are given
in Table 2. Thus, results are satisfying and allow us to recover more than two thirds of the
RUDO motifs without wrongly assigning more than 1% of the other words.

Threshold -4903 -4806 -4712
Specificity 90.00 95.00 99.00
Sensitivity 87.18 84.62 69.23

Table 2. Sensitivity and specificity obtained for the identification of RUDO according to the
chosen log(probability) threshold.

An illustration can be found in Figure 9. It concerns isoloquiritigenin 2’-O-methyltransferase
(pdb ID: 1fp1) which was here co-crystallized with a SAH molecules. Four words were
predicted as RUDO with a threshold of -4712 whereas only one has been encoded as RUDO.
However, looking of the 3D conformation, it appears that all four identified fragments are
really closed to the ligand. Thus, the method using the HMM-SA as a tool to discover patterns,
is not limited to the fragments being strictly encoded into the identified fragments but is also
able to discover fragments with close encodings and thus structures, as only sequence is finally
taken into account. Hence, fragments which are likely to adopt a RUDO-like conformation
can be as well identified by the method.

Fig. 9. 3D representation of 1fp1 (light grey cartoons) co-crystallized with a SAH molecule
(indicated by a circle). The fragments identified as RUDO are black-coloured.

4.5.3 Prediction of a specific β-turn
The prediction of turns is also of special interest in protein study (Fuchs & Alix, 2005). The
four-SL word HBDS can be linked to β-turns: the corresponding fragment conformations are
shown in Figure 10. This is a frequent word, in our database, it was found 1,633 times in 1,363
different proteins (there are one to six occurrences in those proteins). The AUC associated to
the prediction of HBDS is 0.9359. Table 3 indicates the specificities and sensitivities associated
to different log(probability) values. The results are a bit less efficient than previous ones (due
to a lower sequence specificity) but enable to locate 85% of those turns with a specificity of
90% (knowing this specificity is likely to be underestimated because of close fragments which
have not been strictly encoded into HBDS).
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Fig. 10. 3D representation of several fragments encoded into HBDS.

Threshold -4013 -3844 -3777
Specificity 90.17 95.11 98.88
Sensitivity 84.71 71.07 28.93

Table 3. Sensitivity and specificity obtained for the identification of HBDS according to the
chosen log(probability) threshold.

4.6 Prediction method outcome
The automatic annotation of simply sequenced proteins is a very important task in the present
context of high-throughput sequencing programs. The method proposed in this section
is based on the identification of motifs of interest directly on structures using HMM-SA.
The input data of the described method are only AA sequences and as a consequence, only
patterns having sequence specificities will be likely to be handled with this method. But for
this kind of motifs, the method is really powerful. One method (Maupetit et al., 2009) has
already been proposed to predict the 3D structure of small peptides through HMM-SA but
the motif-oriented aspect of the method proposed here makes it much more precise and time
efficient.
As much information as possible is extracted from data. The dependence between AA
sequences and 3D structures is learned in the first step through the use of HMM-SA. Then,
the second step takes advantage of two different sources of information by building a HMM.
Firstly, the strength of dependence between AAs and SLs is quantified and used through
observation probabilities: some observations will be really trusted (when a strong link has
been found in the first step) whereas others will be considered with care as less reliable.
Secondly, the dependence between successive SLs (some SLs favourably follow other ones)
is also taken into consideration by the computation of transition probabilities. Finally, a really
complete model is obtained by the addition of both steps.
Moreover, as HMM-SA is only an intermediate between sequence and function (or any other
interesting pattern), the method, as shown in some illustrations, is able to identify fragments
as close to the target word even if this fragment would not be encoded into the exact SL target
word. Hence, relying on sequences is a good way to overcome some cases of flexibility: in
the crystallization conditions, the fragment has not been found in the strict conformation
associated to the target word, but its AA sequence specifities can be recognized by the
prediction method. Eventually, HMM-SA encoding and the proposed prediction method are
interestingly complementing each other in the prediction of patterns of interest.
Furthermore, the important adaptability of the prediction method is of large interest. Indeed,
in this paper we focused on pattern which had been identified directly through HMM-SA
but it is completely possible to identify 3D motifs as interesting for any other reason, to
encode it into HMM-SA and to build the model on the obtained word. Let us recall here
that the size of considered fragments is not limited. Earlier, only seven-residue fragments
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have been considered but any length would be possible. Furthermore, as illustrated through
the three examples, the size of the learning dataset can be really variable (from 35 to 1633
occurrences of the pattern) as the model is always the same. The only variable parameter is the
log(probability) threshold. However, preliminary studies seem to indicate that this threshold
depends on the strength of the sequence specificity of the structure. Hence, further work could
be able to set this threshold directly from the quantification of this dependence.

5. Conclusion

Interest and limits of the HMM to study 3D protein organisation
In contrast to supervised learning strategies (Levitt and Chothia, 1976; Kabsch and Sander,
1983; Richards and Kundrot, 1988; Prestrelski et al., 1992; Hutchinson and Thornton, 1993;
Zhu, 1995), the SLs emerged from the HMM without any prior knowledge of secondary
structural classification. In that sense, the HMM is able to classify conformations that
template studies must describe as undefined or random structures and also to subdivide
conformation classes previously defined as a single class, resulting in a finer description of
the 3D conformations. For instance, the HMM approach allows different levels of variability
within each SL. Classical methods have recently been used to extract and classify local
protein backbone elements but these methods did not take into account any local dependence
between SLs: all these studies used only the structural characteristics to identify structural
3D letters and reconstructed a posteriori the organization of these 3D conformations. One
major contribution of HMM is that this model implicitly takes into account the sequential
connections between the SLs. It is striking that structurally close SLs can have different roles
in the construction of 3D structures.
HMM-SA learning has shown to be stable over different protein sets. Our model fits
well the previous knowledge related to protein architecture organisation. Using such
a model, the structure of proteins can be reconstructed with an average accuracy close
to 1.1 Å root-mean-square deviation and for a low complexity of 3D reconstruction (see
Camproux et al., 2004, for details). This stochastic HMM approach allows the characterization
of different SLs with different fragment heterogeneity by taking into account their global
organization and quantifying their connections. It results in a fine and pertinent description
of the 3D structures and a very performant tool to simplify 3D conformation of proteins.
Different successful applications of HMM-SA for 3D analysis have been performed.
This ability has allowed to design several methods of protein studies, such as the prediction
of interesting patterns detailed in this chapter. This method has shown to be really efficient
for patterns having a certain AA sequence specificity. Further work should allow to predict
the efficiency and the threshold to be used directly from a quantification of this dependency.
Moreover, this prediction method has the main advantage to be really adaptive, to different
pattern lengths or to different alphabets for example. In this study, HMM-SA has been used
because of its very interesting abilities of precise description especially for loops, but the same
methodology could be applied on other types of alphabets. Finally, the method is bounded
by the function specificity of the pattern. Indeed, a function might be associated to different
patterns. Thus, our method is able to predict one type of realization of a given function at
a time. Of course, it is completely possible to learn several patterns linked to a function
and to give a global prediction for all of them. But for the moment, this limit prevents us
to compare with prediction methods for specific function (such as Ansari & Raghave, 2010)
encoded through different patterns. This should be quickly possible by the identification of
new patterns which is in progress.
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6. Further HMM improvements

Concerning the HMM-SA identification, a number of improvements can be brought into the
HMM modeling by taking into account deterministic dependency and local descriptors, the
criterion of model selection and posterior probabilities of different structural letters in the
encoding.
In the previouswork, the ideawas to consider themodel of Figure 2where all Xi are generated
independently from each other conditionally to a hidden state Si ∈ S = {1, 2, . . . ,K} as
detailed in Section 2.2. One problem of this approach is that it does not take into account the
correlation between Xi and Xi+1. We alternatively suggest to consider the model where the
distribution of Xi+1 depends on Si+1 (like in the previous model) and from Xi. For example,
if we assume that X1

i+1 = X3
i and that (X2

i+1, X3
i+1, X4

i+1) has a Gaussian distribution whose
parameters only depend on Si+1, the resulting model both improves the existing one and
reduces its number of parameters.
A critical point of the HMM-SA approach is also related to the model selection: how many
structural letters should we use in order to get the best structural alphabet ? For this problem
however, our objective is not only to select the most parsimonious model providing the best
fitting but also to provide a reliable classification of the fragments in order to allocate a given
fragment to a specific structural letter with the least possible uncertainty. For that purpose,
it might be interesting to replace the used BIC criterion by classification orientated criteria
like the ICL (Biernacki et al., 2000; McLachlan & Peel, 2008) or the Discriminative Information
Criterion from Biem (2003). The idea of these approaches is to introduce in the penalization
a term related to the entropy of the classification which purpose is to avoid to select a model
where two structural letters are too close to each other.
Another important issue is related to the encoding of 3D structures into sequences of structural
letters. For that purpose, it is both natural and classical to use the Viterbi’s algorithm in
order to obtain the MAP encoding. However, it often exists many alternative suboptimal
configurations that might be of interest. In order to check this, it might be interesting to
compute the posterior distribution P(S = s|X = x, θ̂) using the Forward/Backward quantities
and hence to point out regions where the structural alphabet encoding has a low confidence.
One may then either exclude this low reliability regions or take into account the uncertainty
of the encoding by sampling several encoding for these regions.
It also might be of great interest to introduce in the HMM-SA model a descriptor of the
structure flexibility in its learning process. Initially, a unique 3D structure was supposed to
correspond to one protein sequence (Mirsky, 1936). The constant and rapid increase in the
number of experimentally solved protein structures has shown the flexibility of 3D structure
proteins to adapt to different conditions and partners. Thus, this property is at the heart of the
fundamental functions of proteins. This flexibility is being quantified by parameters such as
the B-factor. The inclusion of this information in the construction of a new alphabet could be
used to define classes of structures particularly flexible and to better model the complexity of
proteins. For instance, knowledge and prediction of these flexible regions could significantly
improve docking protocols, including the choice of starting structures.
Actually, if the HMM-SA original model only considered the 3D structure of the protein, the
additional work presented in this chapter has shown that the original AA sequences also bear
useful physicochemical information that can improve the prediction. It is hence very tempting
to combine these two approaches together by introducing the AA sequence into the HMM-SA
model from the beginning like suggested in Figure 11.
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Fig. 11. Graph of dependencies in the model combining both the 3D structure and the
primary sequences. The model is drawn for n = 7 Cα hence resulting in a total of n− 3 = 4
SLs.
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1. Introduction

Power optimization and power control are challenging issues for server computer systems. A
system can be represented as a set of components whose cooperative interaction produces
useful work. These components may be heterogeneous in nature and may vary in the
power consumption and power control mechanisms. Server system components may
coordinate power control actions using embedded controllers or special hardware. System
development tends to be a complex process that competes for performance in the presence
of design constraints. These constraints may be on manufacturing cost, validation cost, area,
form-factor, or operational costs. Operational cost is related to the cost of operating a system
for a unit of work. Operational cost reduction requires observability, controllability, and
adaptability. These features come at a price that may increase the manufacturing, design,
and validation costs.
Energy efficient design helps in realizing a system that minimizes power and thermal
dissipation for a given performance constraints. These systems can perform one or
many functions related to power/thermal management for a given performance policy: 1.
Parameter tuning to reduce energy consumption for a given performance policy. This may
require collective (or coordinated) tuning of system components for minimum power usage
at given performance levels. 2. Limiting the power of an individual component (or set
of components) in a power constrained system. Power is allocated (or de-allocated) in a
manner such that performance degradation is minimized to the extent possible. 3. Power
prediction and forecasting to avoid sudden state changes. This prediction can be at the
component level or at the system level. For example, we may predict the inactivity periods
between bursts of memory traffic, which allows us to proactively prepare the system for
an appropriate sleep state. This avoids reactive latencies and hence increases performance.
4. Distributing the available power to system components in a manner that maximizes the
overall performance. One strategy may involve individual allocation (or de-allocation) due to
each component’s share in performance gain. 5. Using activity vectors to perform thermally
balanced computing, thus avoiding hot spots. Activity data can also be used to co-schedule
tasks in a contention-free and energy-efficient manner.
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Furthermore, energy-efficient systems design involves complex choices due to a variety of
degrees of freedom for power parameter tuning. The process involves modeling methodology,
implementation choices, and dynamic tuning. Modeling methodology includes the choice of
algorithms or heuristics that tunes the state transition. Implementation choices involve the
hosting of executable code in a manner such that it can access the appropriate telemetry data
in an efficient manner at runtime. Additionally, it should have enough computation power to
perform policy-related functions while being non-intrusive during sleep states.
In recent years energy-efficient design in servers has received much primarily due

• The need to reduce heat dissipation, thereby reducing the cooling costs

• The need to reduce energy consumption, thereby reducing the energy-related operating
costs

• Strict current limits in a power-limited server rack. It may therefore be desired to maximize
the rack consumption while keeping the energy limits within regulations

• Capacity planning that requires efficient use of existing real-estate, which necessitates the
optimal use of available racks.

In general, energy efficient design helps in realizing a system that minimizes power and
thermal dissipation for a given performance constraints. These systems can perform one or
many functions related to power/thermal management for a given performance policy:

• Parameter tuning to reduce energy consumption for a given performance policy. This
may require collective (or coordinated) tuning of system components for minimum power
usage at given performance levels.

• Limiting the power of an individual component (or set of components) in a power
constrained system. Power is allocated (or de-allocated) in a manner such that
performance degradation is minimized to the extent possible.

• Power prediction and forecasting to avoid sudden state changes. This prediction can be at
the component level or at the system level. For example, we may predict the inactivity
periods between bursts of memory traffic, which allows us to proactively prepare the
system for an appropriate sleep state. This avoids reactive latencies and hence increases
performance.

• Distributing the available power to system components in a manner that maximizes the
overall performance. One strategy may involve individual allocation (or de-allocation)
due to each component’s share in performance gain.

• Using activity vectors to perform thermally balanced computing, thus avoiding hot spots.
Activity data can also be used to co-schedule tasks in a contention-free and energy-efficient
manner.

• Profiling task characteristics related to (a) Task priority (b) Energy and Thermal profile (c)
Optimization methodology regarding latency targets proportional to task priority.

2. HMM approach

We face several challenges in the establishment of power/thermal monitoring infrastructure
that can uncover complex deviance from an established norm. The correlation of sensors
is typically separated by a significant amount of time that makes it difficult to model. In
such cases, the Hidden Markov Model (HMM) is particularly useful because it can exploit
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the pattern in the sequence of events to predict the state. Since HMM uses and correlates
observations with hidden states, it may very well be a consideration in system design.
Observation points can be optimized using a reasonable set of system-wide QoS checkpoints
(QC) or sensors. Hidden states can be created using explicit knowledge of probabilistic
relationships with these observations. These probabilistic relationships, which are also called
profiles, are hardened and evolved with the constant usage of the multiple and autonomous
systems. These profiles, HMM parameters and observation probability density function (pdf)
are stored in a central storage where they are re-estimated based on the HIT/MISS data
collected. If observation checkpoints can be standardized, then the problem of predictability
can be reduced to profiling the existing and new hidden states to standard observations. In
terms of modeling a large number of temporal sequences, HMM can serve as an excellent
alternative, because it has been widely used for speech recognition, image identification,
microbiology, Internet attacks, and misuse based on operating system calls. In all these
applications, the aim is to map a pattern to one of the many states. If we consider an abnormal
behavior to be a pattern of an observed sequence, HMM should be appropriate to map those
patterns to one of several states. Furthermore, it is essential to build an adaptive strategy
based on embedding numerous policies that are informed by contextual and environmental
inputs. The policies govern various attributes of behavior, enhancing flexibility in order to
maximize the efficiency and performance in the presence of high levels of environmental
variability.
Power autonomic environment comprises of cooperating elements that play an optimization
game among themselves in order to optimize its resource usage while adhering to the global
policies related to power and thermal constraints. A real-time mechanism can to be devised
independent of the behavior of the cooperating components. This mechanism enhances the
ability to detect abnormalities or policy drifts by monitoring unusual activities (or drifts) in
the system by comparing it to a user’s profile. It analyzes the trending in a system’s behavior
as it evolves with usage. We may utilize relevant observations (such as changes in system
performance parameters or fault frequency) to predict hidden states (operational degradation,
performance loss). These methods detect and report system abnormality as a result of drift
for an acceptable profile. According to Denning (Denning, 1987), a profile characterizes the
behavior of a given subject with respect to a given object, thereby serving as a signature or
description of normal activity for its respective subject(s) and object(s). Observed behavior can
be characterized using statistical metric represented by a random variable x monitored over a
period of time. Metric can typically be defined using a counter, interval and evaluation data.
Observations records along with statistical models can be used to determine the conformity of
the normal process (or activity). Two of the profiles that aid in QoS analysis are the following:

• System Usage Profile. This profile is the summary of system usage trends for a given
subject (or user DNA). It contains information related to users’ best-known practices (or
trends) such as most used application, average system activity, or user preferences.

• System Activity Profile. This profile is the summary of system resource usage trends over
a period of time (or system DNA). It contains information related to resource usage (CPU
usage, memory usage, input/output (IO) usage, number of tasks, execution-time, and
system calls).

Any deviation from a standard profile identifies a potential anomalous state and triggers a
policy based method supported by autonomics. A false positive trigger acts as a feedback
for retraining the model. A functional approach would correlate the system observations
(using usage and activity profile) and state transitions to predict the most probable state.
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The state in this case describes the component’s ability to operate constructively in an
optimization game for a given objective. These objectives could be related to improving
system’s performance/watt for a given power limits, reducing performance de-gradation as
a result of component fault, or identifying the components that have been compromised as a
result of intrusions or other events.

2.1 Power optimization in server platforms
This chapter presents a framework of modeling and optimization for stochastic power
management using HMM. It describes the essential ingredients that is responsible for building
the profile and detecting any deviations from that profile. The objective is to anticipate the
power/thermal policy deviations while reducing the number of false positives. The model
has to fulfill several objectives related to accurate profile deviation detection using different
ingredients such as:

• QoS checkpoints (QC) that analyzes the sensor activity which predicts the transition from
a normal state to an abnormal state.

• Creation of an activity profile that identifies the abnormal activity of the observable states
by measuring the sensor deviation from the normal behavior. In short, it characterizes the
behavioral signature corresponding to the normal activity of a given subject with respect
to a given object.

• Concept drift that measures the change in the user behavior over a period of time.

• Control loop that adapts the checkpoint trigger according to the weighted sum of
proportional, average, and derivative sensor measurements over derivative and integral
time window.

• Model that predicts the most probable state based on previous state (normal/abnormal) as
well as observed states.

HMM based model utilizes the distributed checkpoints in a platform. These checkpoints
are in a form of sensors, activity counters, error counters, performance counters and energy
counters. A series of observations from these checkpoints are utilized to identify the HMM
model applicable for an evaluation period that describe the workload behavior. Workload
behavior is a characteristics of the resource utilization patterns. For example, workload may
be I/O bound, CPU bound, Network bound or idle. Workload behavior patterns are then
used to tune the system for optimal performance/watt. The methodology essentially use the
HMM based stochastic power management techniques to tune the system effectively in order
to:

• Avoid reactive response to power state change demand.

• Optimal distribution of power states between silicon components according to the
performance gains.

• Optimal tuning of the entry/exit timings of the power states according to the workload
profiles.

• Optimal operation of the fans by evaluating the effectiveness of the changes in Fan speeds
wrt. component heating, power consumption and performance variations.

Depending upon the complexity of workload relationship to the utilization of several active
components in a system, the solution space could involve large number of variables with
high dimensionality. These variables tend to be noisy and discontinuous with little or no
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information about the corresponding interactions between there respective components. The
problem is further aggravated by the fact that hardware/software based power/thermal
optimization functions kicks in autonomously, thus making the complete solution highly
non-linear. The effectiveness of a potentially significant variable for one workload may
cease to be effective for other depending upon the underlying relationship to the output
(estimated power). Conversely, formerly insignificant variable may play a significant role
in determination of estimated power in the newer workloads. Hence, before calibrating a
non-linear equation with a set of selected variables, we also need to select an optimal set of
variables within a large search space that will eventually lead to an accurate solution. Higher
accuracy targets present a larger search space with a potential to uncover currently unknown
non-linear behaviors.

2.2 Variable reduction & consolidation
Complex variables are essential ingredients of building the HMM model. They extract the
observed states functions that are modelled to predict one of the HMM states (QoS, QDP or
QV) (Figure 3). Variable Reduction (Fig. 1) helps to selects the weight for the input variables of
a component (CPU, Memory, HDD etc.) after identifying those which: (1) Are most correlated
with the output values, (2) Cause discontinuities and contribute to the threshold effects in the
output values and (3) Are eliminated as they possess a high degree of linear correlation with
another variable such that both influence the analyzed output variable in a very similar (if not
an identical) way.

Fig. 1. Synthesis of optimal power estimation equation using variable reduction. Reduced
variables construct complex variables that can then be used as emissions in the Hidden
Markov Model

The main objective of variable reduction is to help analyze and compare the slope coefficients
of a system’s model where component’s input variable is regarded as the most significant
which is related to the slope coefficient of the largest absolute value. A large slope coefficient
indicates high sensitivity to very small changes in the input variable that results in very large
changes in the output variable. In our approach we extract consequetive models that are
created by shifting sampling window of the data points. Each model shares the sampled data
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with consequetive models. This helps in converting a multidimension non-linear model into
a series of linear models:

χi =
dPi
dt

=
N

∑
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j
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dt
),
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where, χi represents the estimated rate of change of power, Pi represents the estimated power
of the ith model, λ

j
i represents the coefficient of the jth variable of ith model, Vj represents

the jth input variable, and ti represents the modeling window of the dataset of size M shifted
by d samples. Coefficients λ

j
i of each model i is determined by curve-fitting using Genetic

Algorithm (GA) with the fitness represented by:
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where χ̂i represents the measured rate of change of power. λ
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of the corresponding variable Xj for model i. Finally average of λ
j
i determines the overall

significance of each variable as given by equation 3:
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Variable Xj of each component are selected based on the sensitivity of the variable represented
by λj (Equation 3). Upon the completion of the sensitivity analysis, a reduced equation is
formed for each component (CPU, memory, HDD) using the adjusted weighted sum λ̂k of
dominant variables Vk

x , where k represents the set of all selected dominant variables:

Vx = ∑
k

λ̂k ∗ Vk
x (4)

Reduced set of variables form a distributed observables for identifying a change in a workload
conditions that would require a control action to balance the power, thermal and performance
parameters.

3. Attributes of adaptation

Adaptation is primarily achieved by steering each platform component to its optimal
state. Normally, users are subjected to arbitrary performance and environmental variations.
Adaptive systems exist to solve such problems that result due to a great deal of variability,
flexibility, and dynamism. Adaptation may also serve functions that may be mutually hostile
and pull in different directions. This results in making compromises between solutions
in an effort to maximize the fitness of the overall solution. For example, increase in
performance is generally associated with an increase in power that results in a further
increase in power due to cooling pressures. An adaptation function will optimize the power
in a manner that delivers the desired performance as perceived by the application. It is
noteworthy that desired performance may not necessarily be the highest performance. In
real systems, it is impossible to improve all aspects of the target policy to the same degree
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in a manner that delivers the desired performance as perceived by the application. It is
noteworthy that desired performance may not necessarily be the highest performance. In
real systems, it is impossible to improve all aspects of the target policy to the same degree

simultaneously. Traditional adaptation techniques use single point optimizations and do not
employ multiple adaptations synergistically. For complex platforms, adaptation approach
migrates to multi-point space exploration that chooses the optimal configuration that can
continue to achieve homeostasis. This requires a prediction-based classifier that determines
the survivability of a particular configuration. An important step in adaptation is to generate
on-line (or off-line) behavioral profiles of different configurations under varying resource
conditions. Necessary requirements for the adaptation process are:

• The ability to monitor resource conditions in a continuous mode using sampling rates
according to observed data redundancy and the control periods.

• The ability to determine when adaptation should be performed.

• The ability to determine how the adaptation should be performed by modeling control
behavior.

• The QoS profile that describes the real-time constraints and its resource requirements for a
given autonomic element.

• Choice of available execution paths for a given autonomic element.

Fig. 2. Adaptation as a function of compliance scores/hints and the history of Adaptation.
An autonomics manager acts as a conduit to the knowledge base. AEs make a process
control decision using the previously tuned parameters based on applicability of the
historical trends due to workload changes.

The QoS profile governs an appropriate level of resource reservation by indicating the output
quality levels in a dynamic fashion. In general, the QoS maximization process starts with an
initial resource allocation which it revises according to changing application demands and
satisfaction levels. For example, applications can specify the satisfaction level at a scale of
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0-9, with 9 being extremely satisfied. Additionally, applications can offer potential hints into
the basis of performance loss. This information is consumed by the competing objectives
functions that engage in an optimization game and generate an alternate configuration to
maximize the application satisfaction score. Fig. 2 shows the adaptation infrastructure where
an application produces a satisfaction score and associated hints.
Models may utilize these hints based on their applicability using an event manager filter. Once
compliance score and hints are evaluated, each model identifies a set of tuning parameters that
can maximize the compliance score. Resulting decisions steer each model to dynamically train
itself based on the historical trends and scores. The dynamic training process transparently
includes the competing strategy in order to play the optimization game that leads to a
stable equilibrium. Traditional adaptation techniques (especially power optimization) have
remained seemingly incognizant of the strategies employed by other components and the
interplay between them. The adaptation techniques are built with an assumption that other
components are not operational at the time of adaptation. Global optimization is only possible
if tradeoffs between competing components are identified. In the absence of tradeoff study,
only the most aggressive strategy, although suboptimal, may survive. We can characterize
the operations of the various components as a non-cooperative dynamic game (Γ) played at
interval T when game strategies are evaluated. Each player represents its strategy space by
aggregating its goal management strategies. For example, the CPU can represent its power
management strategy space using a set of N+1 "P" states, as illustrated in Equation 5:

ST
cpu = [S0

cpu, S1
cpu, S2

cpu, S3
cpu, · · ·SN

cpu] (5)

Where ST
cpu represents the strategy space that is not attached to any CPU power management

scheme. The strategy space for other components is also represented in the same manner.
Cumulative strategy space is used to optimize the usage of the shared resource as described
by the global policy specification, as shown in Equations 6 and 7:

f (R(t)) ≥ ∑
i
(SR

i (t)) (6)

f (R(T + 1)) = f (R(T))− ∑
i
(δR

i ) (7)

Where, Sj
i(t) represents the strategy at time "t" for component "i" and shared resource "j".

f (R(t)) represents the policy specification of shared resource "R" at time "t". δR
i represents the

reduction in resource "R" by component "i" in the subsequent interval (T+1). Consequently,
higher δR

i may not directly translate to a higher quality. The objective is to determine a value
for δi such that both the overall quality of service of the device is maximized.
Once automated, adaptation maximizes the performance of the target system without
manual intervention. It tunes a system that trades off resource requirements over time
for a desired level of quality of service. Furthermore, it provides flexibility in allocating
resources to competing elements in a manner such that all objectives’ goals meet their
real-time requirements. Tuning History acts to correct the model throughout the life of
the platform optimization objectives. Complex variables, compliance scores, hints and
component performance counters act as standard emissions that construct the basis of HMM
model. Furthermore, adaptation step is performed by changing the operating functions of
cooperating component (power state, frequency, off-lining, changing idle timings etc.)
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3.1 Control modeling ingredients
This section describes the essential ingredients for a profile detection system (PDS) that is
responsible for building the profile and detecting any deviations from that profile. The
objective of the PDS is to anticipate the power, thermal or performance policy deviations while
reducing the number of false positives. An instantaneous deviation from a normal profile can
be expected due to a momentary change in the system environment. Therefore in PDS we have
to fulfill objectives related to accurate profile deviation detection using different ingredients
such as:

• Checkpoints to analyze the sensor activity to predict the transition from a normal state to an
abnormal state.

• Activity profile to identify the abnormal activity of the observable states by measuring
the sensor deviation from the normal behavior. In short, it characterizes the behavioral
signature corresponding to the normal activity of a given subject with respect to a given
object.

• Concept Drift to measure the change in the user behavior over a period of time.

• Control Loop that adapts the checkpoint trigger according to the weighted sum of
proportional, average, and derivative sensor measurements over derivative and integral
time window.

• Model to predict the most probable state based on previous state (normal/abnormal) as
well as observed states. This can be accomplished using hidden Markov model (HMM) as
described later in this section.

4. Hidden Markov Model

HMM-based approaches correlate the system observations (usage and activity profile) and
state transitions to predict the most probable state sequence. It represents a stochastic model
of discrete events and a variation of the Markov chain. Like a conventional Markov chain, an
HMM consists of a set of discrete states and a matrix A = aij of state transition probabilities.
The states of the HMM can only be inferred from the observed symbols, hence the use of
the term hidden. HMM modeling schemes consist of observed (checkpoints) states, hidden
(quality of service) states, and HMM (activity) profiles. HMM training using initial data
and continuous re-estimation creates a profile that consists of transition probabilities and
observation symbol probabilities. Steps involved in HMM modeling include:

• Measuring observed states that are analytically or logically derived from the QoS
indicators. These indicators are test-points spread all over the system representing
competing risks derived analytically or logically using QoS checkpoint (QC) indicators.
Profile deviation can be considered to be a result of several components competing
for occurrences of the deviation. In this model QoS checkpoint (QC) engine derives
continuous multivariate observation, which is identical to the mean and standard
deviation model except that it is based on correlations among several metrics.

• Resource activity trend that corresponds to resource activity monitored over a larger
sampling period and represent characteristics that repeat over that sampling period. For
example, CPU activity changing depending upon the time of the day. Each period of
activity can be thought of as an extra dimension of activity measure.

• Event interval that represents a time period between two successive activities. For
example, logging attempts between two consecutive intervals fall in this category.
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• Estimating an instantaneous observation probability matrix that indicates the probability
of an observation, given a hidden state p(Si|Oi). This density function can be estimated
using explicit parametric model (usually multivariate Gaussian) or implicitly from data
via non-parametric methods (multivariate kernel density emission).

• Estimating hidden states by clustering the homogeneous behavior of single or multiple
components together. These states are indicative of various QoS states that need to be
identified to the administrator. Hidden states S = {S1, S2, , SN?1, SN} are the set of states
that are not visible but each state randomly generates a mixture of the M observations (or
visible states O). The probability of the subsequent state depends only upon the previous
state.

• Estimating hidden state transition probability matrix using prior knowledge or random
data. This prior knowledge and long-term temporal characteristics are an approximate
probability of state components transitioning from one QoS state to another.

Fig. 3. Hidden States representing the platform policy compliance. These states are estimated
from the checkpoints spread over the system in the form of sensors. Checkpoint sensors can
be configured for accuracy.

The complete HMM model is defined by the following probabilities: transition probability
matrix A = {aij}, where aij = p(Si|Sj), observation probability matrix B = (bi(vm)),
where bi(vm) = p(vm |Si), and an initial probability vector π = p(Si). The observation
probability represents an attribute that is observed with some probability if a particular
failure state is anticipated. The model is represented by M = (A,B,π). The transition
probability matrix is a square matrix of size equal to the number of states and represents the
state transition probabilities. The observation probability distribution is a non-square matrix
whose dimension equals the number of states by the number of observable, and represents
the probability of an observation for a given state. The PDS has the following states:

• HMM state indicates the anticipated degree of compliance by the platform. This
compliance follows the policy that governs the power, thermal and performance (Service
Level Agreement) requirements. Therefore HMM state exists as Compliance Index (CI)
that ranges from 0-9. While a factor of 9 indicates a stable system that is fully compliant,
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compliance follows the policy that governs the power, thermal and performance (Service
Level Agreement) requirements. Therefore HMM state exists as Compliance Index (CI)
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a value of 0 indicates a compliant but un-stable system with over(or under) resource
allocations, frequent variations and reactive control.

• QoS Deviation in progress (QDP) indicates an activity that is setting itself up and expected
to cause the overall quality of service to deteriorate.

• QoS Violation (QV) indicates a successful QoS violation. A successful violation will be
accompanied with unusual resource usage (CPU, memory, IO activity, and so on) and a
low compliance indicator.

Power, Thermal and performance variations in a system can result in sub-optimal states
that may need correction for platform policy compliance. The sub-optimal states need
to be predicted well in advance such that corrective actions can be employed within an
opportunistic window of time. Such conditions can be predicted using a set of sensors that
share probabilistic relationship with the available states. In a platform these sensors are
available as activity counters, temperature monitors, power monitors, performance monitors
etc.

4.1 CPU power variables
Contribution of CPU power consumption can be measured by calculating fetched
micro-operations ((µops)). This metric is directly related to power consumption and also
represents the amount of internal paralleism in the processor. On the other hand, instructions
retired matric only reflects the useful work and neglects the work done in execution of
incorrect branchs and pipeline flushes. The processor decomposes x86 instructions into
multiple micro-operations which are then sent to the execution units. Complex instruction
mix can result in a false calculation of the amount of computations performed. µops acts
independent of complex instructional mix and normalizes this metric to give useful counts.
Apart from using the CPU HW counters, we also use O.S performance meters. One such
matrix is CPU utilization that can be used in lieu of µops with a reduced degree of accuracy.

4.2 Memory power variables
It is possible to estimate power consumption in DRAM modules by using the number of
read/write cycles and percent of time within the precharge, active and idle states (Janzen,
2001). Since none of these events are visible to the microprocessor, we indirectly estimate them
by measuring memory bus accesses by the processor and other events that can be monitored
at the CPU. Whenever a memory transaction cannot be satisfied by an L2 cache, it triggers
a cache-miss action and performs a cache-line sized access to the main memory. Since the
number of main memory accesses is directly proportional to the number of L2 misses, it
is possible to approximate memory access count using L2 cache-miss count. In reality the
relation is not that simple, but there is still a strong causal relationship between L2 misses
and main memory accesses. TLB Misses is another variable that can be significant to power
estimation. Unlike cache misses, which mainly cause a cache line transfer from/to memory,
TLBmisses results in the transfer of a page of data. Due to the large page sizes, they are stored
on the disk and hence power is consumed on the entire path from the CPU to the hard disk.

4.3 I/O power variables
Three major indicators of the I/O power are (1) DMA Accesses, (2) Un-Cacheable accesses
and (3) Interrupt Activity. Out of these three indicators, Interrupt/cycle is the dominant
indicator of the I/O power. DMA indicators perform suboptimal due to presence of various
performance enhancements (like write-combining) in the I/O chip. I/O interrupts are
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typically triggered by I/O devices to indicate the completion of large data transfers. Therefore,
it is possible to correlate I/O power to the appropriate device. Since this information is not
available through any CPU counters, they are made available by the operating system (using
perfmon).

4.4 Thermal data
Apart from various performance counters defined in previous sections, we also consider using
thermal data which available in all the modern components (CPU, Memory) and accessible via
PECI BUS.
The heat produced by a component essentially corresponds to the energy it consumes, so we
define it as:

Qcomponent = P(Util) · Time (8)

where, P(Util) represents the average power consumed by the component as a function of its
utilization. For most components, a simple linear formulation correctly approximates the real
power consumption:

P(Util) = Pbase + Util · (Pmax − Pbase) (9)

where, Pbase is the power consumption when the component is idle and Pmax is the
consumption when the component is fully utilized.

5. QoS Checkpoint control

QoS represents a fitness component that maximizes the work-load compliance index by using
a minimal amount of resources. The QoS contribution of each element is dependent upon
optimal resource allocation that would maximize the CI index and not violate the platform
policy (Power Budgeting etc.). A high CI may still demonstrate low QoS due to non-compliant
resource distribution. While HMM model predicts the new HMM state, contributing elements
predict the desired resource allocation to maximize the CI. CI acts as a feedback path for
training purposes that demonstrates the sensitivity of the resource allocation (or de-allocation)
throughout the life of the platform. Individual components can build proprietary cost
functions (as described below) to predict the desired resource allocation. Once a steady state
condition is reached, where the compliance index is sustained by a given set of resources, any
deviation from that profile can be construed as a QoS (or profile) violation. QoS indirectly
measures the workload compliance efficiency and tries to maximize the compliance factor, as
shown in Equations 10 and 11:

QoS = CI ·
�
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N

·
N

∑
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�
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Ri =
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where CI represents the compliance index of the workload, Rd
i represents the desired

(profiled) resource requirement for component i, Ra
i represents the current resource allocation

and N is the number of components that shares that resource. It should be remembered
that variations in workload demands may require changing the resource allocation (Rd

i ) to
maintain the maximum compliance index.
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In this section we discuss the applicability of the control theoretic architecture that drives
the defensive response based on hysteresis to reduce the incidence of false positives, thereby
avoiding inappropriate ad hoc responses. Excessive responses can slow down the system and
negatively impact the effectiveness of the PDS. PDS control responses are related to adjusting
component functionality (such as throttling), alert generation (to predict QoS violation state)
and analyzing concept drift. We introduce checkpoint control loop that acts as the first state of
a multistage QoS detection system of sequential PDS. The process output of the control loop
provides the observability of an individual QoS checkpoint that aids in the state estimation.
Collective observations from several checkpoints are fed into the statistical model (in this case
HMM) responsible for predicting the state transition. It is imperative that any such output
should be stable and free of oscillations. Response measures are delayed to account for delay
involved in the estimation of QoS state based on observations from other checkpoints.

Fig. 4. PID control loop for QoS checkpoint. The Process output (alert) constitutes the
observation (emission) in an HMM. A true-positive response is fed back to the process
response unit of the PID control to aid runtime retraining. Concept drift analysis aids in
re-setting the reference point.

An appropriate response can be built into the QoS checkpoint approach that predicts the
QoS divergence pattern and triggers the selective response to a control loop. The PID
controller (Fig. 4) may execute one such control loop that takes a measured value from a
QoS checkpoint and compares it with a reference value. The difference is then used to trigger
alert (abnormal activity) to the process in order to establish the process’ measured value back
to its desired set-point. It is built with a weighted integral and differential response to the
trigger mechanism along with the reactive response to an instantaneous measurement. PID
controller can adjust the process outputs based on the history and rate of change of the error
signal, which gives more accurate and stable control. This avoids the situation where alerts
may not be the true representation of QoS activity due to false positives. Such miscalculations
can result in either disproportionate and costly corrective (or defensive) measures or complete
failure. The reference (set-points) values are dynamic in nature and set as a part of coarse
grain settings that are estimated over long periods of time. These re-estimates are required
to account for the changing user behavior, also referred as concept drift. While the set-point
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(reference) may remain constant over a long period of time, it can change due to user behavior
or system policy driven by a temporary change in the operating environment. System data
and the process feedback provide hints that are then used to change the set-point (or set-point
weights) in steps based on system policy. System policy is driven by long-term hysteresis
based on the system’s behavior and the well-known relationship with various checkpoints.

5.1 QoS attributes
Local policy operates within the server node construct and is managed by a management
container (manageability Engine, Base Board Management Controller etc.). The goal of local
policy is to maximize performance per watt while it operates within total allocated power
(Pt

alloc(t)). In order to implement local policy, the following conditions are desired:

• Ability to accurately monitor power at sub-component granularity.

• Ability to accurately control power at sub-component granularity. Sub-Component power
limits are controlled by managing its energy within a given interval. Since energy is
equivalent to integrating power over time, power limits are controlled by managing its
running averages over time.

Ei
T =

� T

0
Ni(t)dt; Ni,avg =

Ei
T

T
(12)

• Ability to accurately monitor average workload performance at runtime.

• Ability to distribute the power among sub-components based on a performance
maximization function. This function can be realized using simple random walk or
complex evolutionary algorithms.

• Ability to communicate any power or performance credits accumulated in successive
evaluation periods.

Felter et al propose a power shifting policy (Felter, 2005) that is analogous to
optimal power distribution discussed in this section. This policy reduce peak power
consumption by using workload-guided dynamic allocation of power among components
incorporating real-time performance feedback, activity-related power estimation techniques,
and performance-sensitive activity-regulation mechanisms to enforce power budgets. In
addition to the necessary elements required to implement local and global policies, following
autonomics infrastructure items are required to build the power distribution model that can
be summarized as follows:

5.1.1 Adaptive sampling Infrastructure (LSI)
LSI is responsible for setting the optimal size of the monitoring/control interval. While
shorter intervals are better for accuracy, they can overwhelm the natural behavior of the
workload. Furthermore, short control intervals impose stronger than necessary constraint of
power budgets. Therefore it is desirable to construct the sampling scheme that is statistically
proportional to the proximity of the process to the critical threshold according to following
equation:

T = Tbase

�
1 + α · Nalloc − Navg

Nalloc
+ β · Pr0 − Pravg

Pr0

�
; α + β = 1 (13)
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5.1.2 Local Cost Minimization Function (LCMF)
LCMF performs the power distribution amongst node sub-components (DIMM(s), CPU(s),
I/O, LAN(s), Storage etc.) in a manner that maximizes the performance while operating under
a constant power budget. This function trains itself by utilizing historical trends, identifying
repeating patterns. These patterns can be represented in the form of discrete HMM CI states
(Sec. 4) that can predict the degree of policy compliance in the future. For example, system
sub-components power allocation function is given by:

Nalloc ≥
n

∑
k=1

(Nk = [ f (xk) + Nk,min]) Pro ≤ Pravg (14)

Pravg =
n

∑
k=1

Ck · (Nk)
ck (15)

Where:
f (xk) = Power consumed by component k as a function of performance state xk
Nk,min= Minimum power of component k
Ck and ck= Trained coefficients of performance equation. For linear model, ck = 1.
Navg = Average power consumption
Nalloc = Node Power Budget allocated by global policy
Pro = Desired performance
Once performance model is trained, Nk can be adjusted for maximum performance gain.
Discrete states prediction triggers the control action that pro actively mitigates the effects of
the performance loss (required to enforce a given policy).

5.1.3 Global Cost Minimization function (GCMF)
GCMF works similar to local cost maximization function on server nodes. It performs the
power distribution amongst server nodes in a manner that maximizes the performance while
operating under a constant global power budget.

5.1.4 Running Average Power Synthesizer (RAPS)
RAPS is a running average power calculator for a monitored quantity over an enforcement
window. RAPS measurement allows for all the sub-components and server nodes to control
average power over a given interval.

5.1.5 Running Average Performance Synthesizer (RAPrS)
RAPrS is a running average performance calculator of the node workload. This is monitored
for each individual workload running in a server node.
Running average power and performance calculator can be utilized to dynamically monitor
the power and performance trends over an adjustable evaluation window of time and
maintain the average power at or below a given threshold.

6. Profile deviation detection (PDS) architecture

This section characterizes components of the PDS that cooperate with each other to predict a
QoS noncompliance (violation) state. PDS is deployed as a part of an autonomic element (AE)
that detects the signs of QoS violation locally and independent of other AEs.
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The PDS architecture comprises multiple stages with an information feedback mechanism
between stages. These stages can be roughly defined as follows:

• QoS Checkpoint Control Stage (QCCS) is the observability stage with an objective to
produce stable emissions using continuous estimations. This stage is also responsible for
detecting temporary changes due to legal activity and concept drift signifying changing
long-term application behaviors. This decision is crucial because a drift in the normal
behavior may also be falsely predicted a QoS violation. Observation can be rejected as a
noise, or classified to a valid state based on the trending, similarity between unclassified
states tending toward certain classification, and feedback from state machine based on
other independent observations.

• QoS State Detection Stage (QSDS) receives the observability data from multiple
checkpoints and predicts the transition to one of the hidden states (normal, QoS violation)
based on trained statistical model. An estimated QoS decision is fed back to QCCS,
which helps re-estimating the usage trends while avoiding any false positive preemptive
responses.

• QoS Response Stage (QRS) is responsible for initiating the corrective (healing) actions due
to state transition. These actions may scale back any abnormal activity as seen in the
observability data. A mis-predicted state transition may initiate an inappropriate response
and will have negative effect on checkpoint activity.

After various components of the model are trained, it enters a runtime state where it examines
and classifies each valid observation. Various components of a QoS detection system are
explained in the following sub-sections.

7. QoS checkpoint control stage (QCCS)

QCCS represents the feedback control component (Figure 5) for an individual QoS checkpoint.
It comprises a measurement port, PID controller, observation profiler, concept drift detector
(CDD), and feedback path to the process input.
Measurement Port is composed of fast-acting software and silicon hooks that are capable
of identifying, counting, thresholding, time-stamping, eventing, and clearing an activity.
Examples of such hooks are performance counters, flip counters (or transaction counters),
header sniffers, fault alerts (such as page faults), bandwidth usage monitors, session activity,
system call handling between various processes and applications, file-system usage, and
swap-in/swap-out usage. Measured data is analyzed as it is collected or subsequently to
provide real-time alert notification for suspected deviant behaviors. These fast-acting hooks
are clustered to enact an observation. Measurements can be sampled at regular intervals or
cause an alert based on a user-settable threshold.
Observation Profiler monitors various inputs for maintaining/re-estimating activity profile
that ascertains a rough (partially perfect) boundary between normal and abnormal activity
and characterized in terms of a statistical metric and model. A metric is a random variable
representing a quantitative measure accumulated over a period. Measurements obtained
from the audit records when used together with a statistical model analyze any deviation
from a standard profile. An observation profiler receives multiple feedbacks from PID control
output, event trigger and QSDS, and performs recursive estimations that generate successive
probabilistic profile data estimates with a closed-form solution. A trigger event is generally
followed by a change in the PID control output that initiates a recovery response. A true
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Fig. 5. QCCS is responsible for providing the stable observability data to the QoS state
detection stage. This data is profiled for variances due to changing user behavior and
temporary changes in system environment (also referred to as disturbances).

positive recovery response will scale back the checkpoint activity to normal. A false positive
action will instead cause oscillations, degraded system performance, or little change in the
measured error. Activity profile data consists of probability distribution function (pdf) and
the related parameters (e.g. variance, mean, activity drift factor etc). Successive observations
are evaluated against this profile which results in its new profiles and drift detection. An
observation (emission) can also be a set of correlated measurements but represented by a
single probability distribution function. Each of these measurements carries different weights
as in multivariate probability distribution. Such relationship is incorporated into the profile
for the completeness of the observation and reduces the dimensionality for effective runtime
handling. Observability in this case is derived out of the profile that represents a consolidated
and single representation of activity. A sample profile data structure is defined as follows.
NFS Profile {

Observation Name = NFS Activity
Input Events = {Disk I/O, Network I/O, · · · }
Output Emissions = Function (Input Events)
PDF Parameter = {D[N], D[HI], D[FI], D[IP], D[IS]}
Unclassified Observation = {U[t1], U[t2], · · · , U[tn]}
Concept Drift Data = {ηt1, ηt2, · · · }
}

Concept Drift Detector detects and analyzes the concept drifting (Widmer, 1996) in the profile
where training data set alone is not sufficient, and the model (profile) needs to be updated
continually. When there is a time-evolving concept drift, using old data unselectively helps
if the new concept and old concept still have consistencies and the amount of old data
chosen arbitrarily just happen to be right (FAN, 2004). This requires an efficient approach
to data mining that helps select a combination of new and old (historical) data to make an
accurate re-profiling and further classification. The mechanism used is the measurement of
Kullback-Leibler (KL) divergence (Kullback, 1951), or relative entropy measures the kernel
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distance between two probability distributions b(.|.) of generative models as expressed in
Equation 16:

αt = KL(b(v|θ�t), b(v|θt)) (16)

Where: αt = KL divergence measure θ�t = New Gaussian component θt = Old Gaussian
component at time . v = Observation vector We can evaluate divergence by a Monte Carlo
simulation using the law of large numbers (Grimmett, 1992) that draws an observation θ�t
from the estimated Gaussian component , computes the log ratio, and averages this over M
samples as shown in Equation 7.7 as:

αt ≈ 1
M

M

∑
i=1

log
�

b(vi|θ�t)
b(vi|θt)

�
(17)

KL divergence data calculated in the temporal domain are used to evaluate the speed of the
drift, also called drift factor ( ). These data are then used to assign weights to the historical
parameters that are then used for re-profiling.
Feedback Path is responsible for feeding back the current state information to the profile
estimator. The current state information is calculated by running the ISDS module using the
current model parameters. This information is then used by the profiler to filter out any noise
and re-estimate the activity profile data. If a trigger event is not followed by a state transition,
then a corrective action is performed to minimize the false positives in the future.
PID Controller (Fig. 4) generates an output that initiates a corrective response applied to a
process in order to drive a measurable process variable toward a reference value (set point).
It is assumed that any QoS activity will cause variations in the checkpoint activity, thereby
causing a large error. Errors occur when a disturbance (QoS violation) or a load on the
process (changes in environment) changes the process variable. The controller’s mission is to
eliminate the error automatically. A discrete form of PID controller is represented by Equation
18:

u(nT) = P + I + D + u0 (18)

where,

P = Kp · e(nT)

I = Ki · T ·
nT

∑
i=(nT−w)

e(i)

D = Kd · e(nT)− e(nT − 1)
T

where e(t) is the error represented by difference between measured value and set-point, w
is the integral sampling window, nT is the n-th sampling period, and Kp, Ki and Kd are
the proportional, integral, and derivative gains respectively. Stability is ensured using the
proportional term, the integral term permits the rejection of a step disturbance, and the
derivative term is used to provide damping or shaping of the response. While integral
response measures the amount of time the error has continued uncorrected, differential
response anticipates the future errors from the rate of change of error over a period of time.
The desired closed-loop dynamics are obtained by adjusting these parameters iteratively by
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distance between two probability distributions b(.|.) of generative models as expressed in
Equation 16:

αt = KL(b(v|θ�t), b(v|θt)) (16)

Where: αt = KL divergence measure θ�t = New Gaussian component θt = Old Gaussian
component at time . v = Observation vector We can evaluate divergence by a Monte Carlo
simulation using the law of large numbers (Grimmett, 1992) that draws an observation θ�t
from the estimated Gaussian component , computes the log ratio, and averages this over M
samples as shown in Equation 7.7 as:

αt ≈ 1
M

M

∑
i=1

log
�

b(vi|θ�t)
b(vi|θt)

�
(17)

KL divergence data calculated in the temporal domain are used to evaluate the speed of the
drift, also called drift factor ( ). These data are then used to assign weights to the historical
parameters that are then used for re-profiling.
Feedback Path is responsible for feeding back the current state information to the profile
estimator. The current state information is calculated by running the ISDS module using the
current model parameters. This information is then used by the profiler to filter out any noise
and re-estimate the activity profile data. If a trigger event is not followed by a state transition,
then a corrective action is performed to minimize the false positives in the future.
PID Controller (Fig. 4) generates an output that initiates a corrective response applied to a
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causing a large error. Errors occur when a disturbance (QoS violation) or a load on the
process (changes in environment) changes the process variable. The controller’s mission is to
eliminate the error automatically. A discrete form of PID controller is represented by Equation
18:
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where,
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I = Ki · T ·
nT

∑
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D = Kd · e(nT)− e(nT − 1)
T

where e(t) is the error represented by difference between measured value and set-point, w
is the integral sampling window, nT is the n-th sampling period, and Kp, Ki and Kd are
the proportional, integral, and derivative gains respectively. Stability is ensured using the
proportional term, the integral term permits the rejection of a step disturbance, and the
derivative term is used to provide damping or shaping of the response. While integral
response measures the amount of time the error has continued uncorrected, differential
response anticipates the future errors from the rate of change of error over a period of time.
The desired closed-loop dynamics are obtained by adjusting these parameters iteratively by

tuning and without specific knowledge of a QoS detection model. Control parameters are
continuously tuned to ensure the stability of the control loop in a control-theoretic sense, over
a wide range of variations in the checkpoint measurements. While control parameters are
evaluated frequently, they are updated only when improvement in stability is anticipated.
These updates can be periodic over a large period of time.

7.1 Relevant profiles
This section look into events that forms input to the profile structure. Exploiting temporal
sequence information of event leads to better performance (Ghosh, 1999) of profiles that are
defined for individual workloads, programs, or classes. An abnormal activity in any of the
following forms is an indicator of a QoS variation:

• CPU activity is monitored by sampling faults, inter-processor interrupt (IPI) calls, context
switches; thread migrations, spins on locks, and usage statistics.

• Network activity is monitored by sampling input error rate, collision rate, RPC rejection
rate, duplicate acknowledgments (DUPACK), retransmission rate, timeout rate, refreshed
authentications, bandwidth usage, active connections, connection establishment failure,
header errors and checksum failures and so on.

• Interrupt activity is monitored by sampling device interrupts (non-timer interrupts).

• IO utilization is monitored by sampling the I/O requests average queue lengths and busy
percentage.

• Memory activity is monitored by sampling memory transfer rate, page statistics (reclaim
rate, swap-in rate, swap-out rate), address translation faults, pages scanned and paging
averages over a short interval.

• File access activity is monitored by sampling file access frequency, file usage overflow, and
file access faults.

• System process activity is monitored by sampling processes with inappropriate process
priorities, CPU and memory resources used by processes, processes length, processes
that are blocking I/Os, zombie processes, and command and terminal that generated the
process.

• System faults activity represents an illegal activity (or a hardware error) and is sampled to
detect abnormality in the system usage. While rare faults represent a bad programming,
but spurts of activity indicate an attack. n System calls activity measures the system-call
execution pattern of a workload. It is used to compare runtime system-call execution
behavior with the expected pattern and detect any non-expected execution of system calls.
Pattern-matching algorithms match the real-time sequence of system-calls and predict a
normal or abnormal behavior (Wespi, 1999).

• Session activity is monitored by sampling the logging frequency, unsuccessful logging
attempts, session durations, session time, session resource usages, and so on.

• Platform Resource Activity is monitored by sampling CPU, DIMM, I/O power
consumption, and thermal data. Additionally CPU, memory, and I/O bandwidth
performance can also be measured using performance counters available within the CPU
core or un-core logic.
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Fig. 6. QoS state detection stage (QSDS)

7.2 QoS State Detection Stage (QSDS)
QSDS defines the statistical model that is responsible for predicting the current QoS state
based on observable data inputs received from QCCS modules. In this context we may choose
HMM where states are hidden and indirectly evaluated based on model parameters. QCCS
trigger output acts as an emission to a specific HMM model and weighted according to its
significance relative to that model. HMM emissions are defined as processed observation,
derived from one or more temporal input events using a processor function. They represent
competing risks derived analytically or logically using checkpoint indicators. Platform states
can be considered to be a result of several components competing for the occurrences of the
anomaly. Observed inputs may be expressed as a weighted fraction of individual observations
from multiple checkpoints in an attempt to enhance the performance of QoS state detection.
Similar observed inputs (emissions) may be distributed among mixture of models, usually
Gaussian, with weights given to each model based on trivial knowledge and continuous
training. This approach is advantageous as it allows one to model the QoS states at varying
degree of granularity while retaining the advantages of each model. Depending upon the data
characteristics (amount of data, frequency); models can be adapted by modifying weights
such that complex models are favored for complex inputs and vice versa. Such mixture model
can be represented as Equation 19:

p(v) =
K

∑
k=1

akb(v|θk) (19)

ak > 0 and ∑ ak = 1

Where: v = Observation vector p(v) = Modeled probability distribution function ak = Mixture
proportion of component K = Number of components in the mixture model θk = Distribution
Parameters of component b(v|θk) = Distribution function for component
Figure 6 illustrates the HMM-x sub-block which is responsible for receiving the abnormal
activity alert and processes the interrupt to service the hidden-state (QoS) estimation. It
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Figure 6 illustrates the HMM-x sub-block which is responsible for receiving the abnormal
activity alert and processes the interrupt to service the hidden-state (QoS) estimation. It

maintains the HMM data and interacts with the expectation-maximization (EM) block and
the state-estimation (SE) block for retraining and state-prediction flows. This block also
implements reduced dimensionality by combining multiple inputs into a single observation
with its own probability distribution function. This observation is then fed into the EM and
SE block for state estimation. The EM algorithm Grimmett (1992) provides a general approach
to the problem of maximum likelihood (ML) parameter estimation in statistical models with
variables that are not observed. The evaluation process yields a parameter set which it uses to
assign observations points to new states. The EM sub-block is responsible for finding the ML
estimates of parameters in the HMM model as well as mixture densities (or model weights)
and relies on the intermediate variables (also called latent data) represented by state sequence.
EM alternates between performing an E-step, which computes an expectation of the
likelihood, and an M-step, which computes the ML estimates of the parameters by
maximizing the expected likelihood found on the E-step. The parameters found on the
M-step are then used to begin another E-step, and the process is repeated. In the HMM
mixture modeling, QoS checkpoint events under consideration have membership in one of
the distributions we are using to model the data. The job of estimation is to devise appropriate
parameters for the model functions we choose, with the connection to the data points being
represented as their membership in the individual model distributions. SE is responsible for
modeling the underlying state and observation sequence of HMM mixture to predict state
sequences for new QoS states using the Viterbi algorithm (to find the most likely path through
the HMM). Trained mixture appears to be a single HMM for all purposes and can be applied
as a standard HMM algorithm to extract the most probable state sequence given a set of
observations. Estimates for the transition and emission probabilities are based on multiple
HMM models and are transparent to the standard HMM models. The Viterbi algorithm is a
dynamic algorithm requiring time O(TS2) is the number of time steps and S is the number of
states) where at each time step it computes the most probable path for each state given that
the most probable path for all previous time steps has been computed. The state feedback
sub-block feeds back the estimated state to the observation profiler in ICCS, which then uses
this data for recalibrating the profile.

8. System considerations

Profile detection in local platform components (CPU, DIMM etc.) is limited to profiling
local activity using floating QCCS modules. The intent is to reduce the system complexity
and enhance the likelihood of software reuse. These hooks exist to accelerate the combined
measurements of the clustered components with an ability to send alerts based on a
systems-wide policy. It contains the hardware and software that act as a glue between
transducers and a control program that is capable of measuring the event interval and
event trend with an ability to generate alerts upon departure from normal behaviors
(represented by system policy). In this specific case, the feedback control loop is implemented
partially in the silicon (QCCS block) with configurable control parameters. To further
enhance the auto-discoverability, modularity, and re-usability, configuration and status
registers may be mapped into the capability pointer of the PCI Express configuration space.
Similar mechanisms exist today in the very basic form as performance counters (PerfMon),
leaky-bucket counters, and so on. These counters need to be coupled with QCCS modules
that contain a PID controller, profilers, threshold detectors, drift detectors, and coarse-grain
tuners. QCCS modules should be implemented in isolation from the measured components
such that a single QCCS component can multiplex between multiple measurement modules.
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While some of the checkpoints are used for local consumption, others are shared with the
monitor nodes to aid in cooperative state estimation. These checkpoints share the trigger data
with the monitor nodes and contribute as the node’s contribution to the mixture of HMM.
The enormous amount of measurement data and computational complexity are a paramount
consideration in the design of an effective PDS system.

Fig. 7. Illustration of the relationship between events (circles), sensors (SDM) and classifiers
(ODC). Clusters of events (marked by similar colors) are registered to an SDM. SDM upon
evaluating the event properties, generate an event to ODC. ODC is responsible for
classification, trend analysis and drift calculation.

8.1 Sensor data measurement (SDM)
SDM hooks reduce the system complexity and increase the likelihood of software reuse. SDM
accelerates the combined measurements of the clustered components with an ability to send
alerts using a systems policy. Hardware and software acts as glue between transducers and
control program that is capable of measuring the event interval, event trend with an ability to
generate alerts on deviation from normal behavior (represented by system policy). The SDM
hardware exists as a multiple-instance entity that receives alert vectors from various events
spread all over the system. A set of correlated events form a cluster and are registered against
a common SDM instance. This instance represents the Bayes optimal decision boundaries
between set of pattern classes with each class represented by an SDM instance and associated
with a reference vector. Each SDM instance is capable of trending and alerting and integrates
the measurements from the event sensors into a unified view. Cluster trending analysis is
unusually sensitive to small signal variations and capable of detecting the abnormal signals
embedded in the normal signals by supervised learning (Kohonen, 1995).
As illustrated in fig. 7, policy based reference patterns are manually (or automatically)
identified that would result in alerts to ODC. Simple patterns may be represented in a form
of RAW thresholds. More complex patterns would require statistical processing of the RAW
data into meaningful information which is then matched against reference patterns.

8.2 Observation Data Classifier (ODC)
ODC hooks accelerate the classification of an observation alert generated by SDM. This is
multiple-instance hardware (Figure 7) capable of handling multiple observations in parallel.
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generate alerts on deviation from normal behavior (represented by system policy). The SDM
hardware exists as a multiple-instance entity that receives alert vectors from various events
spread all over the system. A set of correlated events form a cluster and are registered against
a common SDM instance. This instance represents the Bayes optimal decision boundaries
between set of pattern classes with each class represented by an SDM instance and associated
with a reference vector. Each SDM instance is capable of trending and alerting and integrates
the measurements from the event sensors into a unified view. Cluster trending analysis is
unusually sensitive to small signal variations and capable of detecting the abnormal signals
embedded in the normal signals by supervised learning (Kohonen, 1995).
As illustrated in fig. 7, policy based reference patterns are manually (or automatically)
identified that would result in alerts to ODC. Simple patterns may be represented in a form
of RAW thresholds. More complex patterns would require statistical processing of the RAW
data into meaningful information which is then matched against reference patterns.

8.2 Observation Data Classifier (ODC)
ODC hooks accelerate the classification of an observation alert generated by SDM. This is
multiple-instance hardware (Figure 7) capable of handling multiple observations in parallel.

Each registered observation instance of the ODC hook consists of probability distribution
parameters of each state. Upon receiving an SDM alert, the observation corresponding to
this alert is then classified to a specific state. Reclassification of observed data may cause
changes in the probability distribution parameters corresponding to the state. ODC is capable
of maintaining the historical parameters, which are then used to calculate concept drift
properties (drift factor, drift speed, and so on) using drift detector.

8.3 Mixture Model (MM) Calculator
The MM calculator determines the probability of the mixture (usually Gaussian) for each
state, using the current observation. During the system setup, event vectors are registered
against SDM instance. These events are clustered and processed in its individual SDM. The
processing includes trigger properties that initiates an observation. These observations then
act as single-dimensional events that are registered to its ODC. Upon receiving the trigger,
ODC performs reclassification of the observation (derived from the trigger) and calculates the
concept drift. It should be noted that this hardware is activated upon a trigger by its parent.

9. Summary

Since the QoS state resulting from service-level-agreements (SLA) compliance cannot be
inferred directly by monitoring any specific parameters, we need to predict QoS violations
based on a mixture of observable data points, events, and current states. This leads to a
statistical mechanism for QoS prediction using HMM where observed data are represented
as a weighted mixture component. Using this mechanism, an observed deviation from a
normal behavior carries a higher probability of being in a sub-optimal state. We define
HMM based statistical model that predicts the QoS state based on observable data inputs
received from checkpoint control modules. This chapter also introduces the concept of
a feedback control mechanism that regulates the defensive response to every perceived
sub-optimality (or abnormality). As explained earlier, this helps reduce the false positive
rate, which is one of the major problems in Profile Detection System (PDS). Modern silicon
(CPU, I/O hubs, PCI Express devices) contains performance counters that can be measured
at moderate granularity. To avoid software overhead, these counters can be mapped to
the feedback control modules. Various functional units of the silicon should be able to
profile the activity trends supported by the eventing mechanism in a power efficient manner.
Physical layer design should support protocols related to optimal monitor-node selection
based on user-defined policies and authentication. PDS needs to understand relationships,
relevance, and correlation between multiple triggers (or emissions) in a computationally
efficient manner.
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